Do you want to publish a course? Click here

Discovery of an Excess of Halpha Emitters around 4C 23.56 at z=2.48

137   0   0.0 ( 0 )
 Added by Ichi Tanaka Dr.
 Publication date 2010
  fields Physics
and research's language is English
 Authors Ichi Tanaka




Ask ChatGPT about the research

We report the discovery of a significant excess of candidate Halpha emitters (HAEs) in the field of the radio galaxy 4C 23.56 at z=2.483. Using the MOIRCS near-infrared imager on the Subaru Telescope we found 11 candidate emission-line galaxies to a flux limit of ~7.5 10^-17 erg s-1 cm-2, which is about 5 times excess from the expected field counts with ~3-sigma significance. Three of these are spectroscopically confirmed as redshifted Halpha at z=2.49. The distribution of candidate emitters on the sky is tightly confined to a 1.2-Mpc-radius area at z=2.49, locating 4C 23.56 at the western edge of the distribution. Analysis of the deep Spitzer MIPS 24 mu m imaging shows that there is also an excess of faint MIPS sources. All but two of the 11 HAEs are also found in the MIPS data. The inferred star-formation rate (SFR) of the HAEs based on the extinction-corrected Halpha luminosity (median SFR >~100 M_solar yr-1) is similar to those of HAEs in random fields at z~2. On the other hand, the MIPS-based SFR for the HAEs is on average 3.6 times larger, suggesting the existence of the star-formation significanly obscured by dust. The comparison of the Halpha-based star-formation activities of the HAEs in the 4C 23.56 field to those in another proto-cluster around PKS 1138-262 at z=2.16 reveals that the latter tend to have fainter Halpha emission despite similar K-band magnitudes. This suggests that star-formation may be suppressed in the PKS 1138-262 protocluster relative to the 4C 23.56 protocluster. This difference among the HAEs in the two proto-clusters at z > 2 may imply that some massive cluster galaxies are just forming at these epochs with some variation among clusters.



rate research

Read More

136 - E. Ibar , D. Sobral , P.N. Best 2013
We describe the far-infrared (FIR; rest-frame 8--1000mu m) properties of a sample of 443 Halpha-selected star-forming galaxies in the COSMOS and UDS fields detected by the HiZELS imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select Halpha (and [OII] if available) emitters in a narrow redshift slice at z = 1.47+/-0.02. We use a stacking approach in Spitzer, Herschel (from PEP and HerMES surveys) and AzTEC images to describe their typical FIR properties. We find that HiZELS galaxies with observed Halpha luminosities of ~ 10^{8.1-9.1} Lo have bolometric FIR luminosities of typical LIRGs, L_FIR ~ 10^{11.48+/-0.05} Lo. Combining the Halpha and FIR luminosities, we derive median SFR = 32+/-5 Mo/yr and Halpha extinctions of A(Halpha) = 1.0+/-0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M*) to A(Halpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies, we provide an empirical parametrisation of the SFR as a function of (u-z)_rest colours and 3.6mu m photometry. We find that the observed Halpha luminosity is a dominant SFR tracer when (u-z)_rest ~< 0.9 mag or when 3.6mu m photometry > 22 mag (Vega) or when M* < 10^9.7 Mo. We do not find any correlation between the [OII]/Halpha and FIR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions. The luminosity-limited HiZELS sample tends to lie above of the so-called `main sequence for star-forming galaxies, especially at low M*. This work suggests that obscured star formation is linked to the assembly of M*, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
543 - Janice C. Lee 2012
We present first results from a narrowband imaging program for intermediate redshift emission-line galaxies using the newly commissioned FourStar infrared camera at the 6.5m Magellan telescope. To enable prompt identification of Halpha emitters, a pair of custom 1% filters, which sample low-airglow atmospheric windows at 1.19 mu m and 2.10 mu m, is used to detect both Halpha and [OII]lambda 3727 emission from the same redshift volume at z=2.2. Initial observations are taken over a 130 arcmin^2 area in the CANDELS-COSMOS field. The exquisite image quality resulting from the combination of the instrument, telescope, and standard site conditions (~0.55 FWHM) allows the 1.19 mu m and 2.10 mu m data to probe 3sigma emission-line depths down to 1.0e-17 erg/s/cm^2 and 1.2e-17 erg/s/cm^2 respectively, in less than 10 hours of integration time in each narrowband. For Halpha at z=0.8 and z=2.2, these fluxes correspond to observed star formation rates of ~0.3 and ~4 Msun/yr respectively. We find 122 sources with a 1.19 mu m excess, and 136 with a 2.10 mu m excess, 41 of which show an excess in both bands. The dual narrowband technique, as implemented here, is estimated to identify about >80% of z=2.2 Halpha emitters in the narrowband excess population. With the most secure such sample obtained to-date, we compute constraints on the faint-end slope of the z=2.2 Halpha luminosity function. These narrow-deep FourStar observations have been obtained as part of the larger NewHalpha Survey, which will combine the data with wide-shallow imaging through a similar narrowband filter pair with NEWFIRM at the KPNO/CTIO 4m telescopes, to enable study of both luminous (but rare) and faint emission-line galaxies in the intermediate redshift universe. [Abridged]
160 - J.-F. Lestrade 2010
Serendipitously we have discovered a rare, bright submillimeter galaxy (SMG) with a flux density of 30 +/- 2 mJy at lambda=1.2mm, using MAMBO2 at the IRAM 30-meter millimeter telescope. Although no optical counterpart is known for MM18423+5938, we were able to measure the redshift z=3.92960 +/- 0.00013 from the detection of CO lines using the IRAM Eight MIxer Receiver (EMIR). In addition, by collecting all available photometric data in the far-infrared and radio to constrain its spectral energy distribution, we derive the FIR luminosity 4.8 10^14/m Lsol and mass 6.0 10^9/m Msol for its dust, allowing for a magnification factor m caused by a probable gravitational lens. The corresponding star-formation rate is 8.3 10^4/m Msol/yr. The detection of three lines of the CO rotational ladder, and a significant upper limit for a fourth CO line, allow us to estimate an H2 mass of between 1.9 10^11/m Msol and 1.1 10^12/m Msol. The two lines CI(3p1-3p0) and CI(3p2-3p1) were clearly detected and yield a [CI]/[H2] number abundance between 1.4 10^-5 and 8.0 10^-5. Upper limits are presented for emission lines of HCN, HCO^+, HNC, H_2O and other molecules observed. The moderate excitation of the CO lines is indicative of an extended starburst, and excludes the dominance of an AGN in heating this high-redshift SMG.
We present a study of the gas kinematics of star-forming galaxies associated with protocluster 4C 23.56 at $z=2.49$ using $0.4$ resolution CO (4-3) data taken with ALMA. Eleven H$alpha$ emitters (HAEs) are detected in CO (4-3), including six HAEs that were previously detected in CO (3-2) at a coarser angular resolution. The detections in both CO lines are broadly consistent in the line widths and the redshifts, confirming both detections. With an increase in the number of spectroscopic redshifts, we confirm that the protocluster is composed of two merging groups with a total halo mass of $log{(M_{rm cl}/M_{odot})} =13.4-13.6$, suggesting that the protocluster would evolve into a Virgo-like cluster ($>10^{14} M_{odot}$). We compare the CO line widths and the CO luminosities with galaxies in other (proto)clusters ($n_{rm gal}=91$) and general fields ($n_{rm gal}=80$) from other studies. The 4C23.56 protocluster galaxies have CO line widths and luminosities comparable to other protocluster galaxies on average. On the other hand, the CO line widths are on average broader by $approx50%$ compared to field galaxies, while the median CO luminosities are similar. The broader line widths can be attributed to both effects of unresolved gas-rich mergers and/or compact gas distribution, which is supported by our limited but decent angular resolution observations and the size estimate of three galaxies. Based on these results, we argue that gas-rich mergers may play a role in the retention of the specific angular momentum to a value similar to that of field populations during cluster assembly, though we need to verify this with a larger number of samples.
147 - C. A. Scharf 2003
We present sensitive, high-resolution, X-ray imaging from Chandra of the high-redshift radio galaxy 4C 41.17 (z=3.8). Our 150-ks Chandra exposure detects strong X-ray emission from a point source coincident with the nucleus of the radio galaxy. In addition we identify extended X-ray emission with a luminosity ~1e45 erg/s covering a 100kpc (15) diameter region around the radio galaxy. The extended X-ray emission follows the general distribution of radio emission in the radio lobes of this source, and the distribution of a giant Lyman-alpha emission line halo, while the spectrum of the X-ray emission is non-thermal and has a power law index consistent with that of the radio synchrotron. We conclude that the X-ray emission is most likely Inverse-Compton scattering of far-infrared photons from a relativistic electron population probably associated with past and current activity from the central object. Assuming an equipartition magnetic field the CMB energy density at z=3.8 can only account for at most 40% of the Inverse-Compton emission. Published submillimeter maps of 4C 41.17 have detected an apparently extended and extremely luminous far-infrared emission around the radio galaxy. We demonstrate that this photon component and its spatial distribution, in combination with the CMB can reproduce the observed X-ray luminosity. We propose that photo-ionization by these Inverse-Compton X-ray photons plays a significant role in this system, and provides a new physical feedback mechanism to preferentially affect the gas within the most massive halos at high redshift. This is the highest redshift example of extended X-ray emission around a radio galaxy currently known. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا