Induced superconductivity in noncuprate layers of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ high-temperature superconductor: Modeling of scanning tunneling spectra


Abstract in English

We analyze how the coherence peaks observed in Scanning Tunneling Spectroscopy (STS) of cuprate high temperature superconductors are transferred from the cuprate layer to the oxide layers adjacent to the STS microscope tip. For this purpose, we have carried out a realistic multiband calculation for the superconducting state of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) assuming a short range d-wave pairing interaction confined to the nearest-neighbor Cu $d_{x^2-y^2}$ orbitals. The resulting anomalous matrix elements of the Greens function allow us to monitor how pairing is then induced not only within the cuprate bilayer but also within and across other layers and sites. The symmetry properties of the various anomalous matrix elements and the related selection rules are delineated.

Download