Do you want to publish a course? Click here

Cool Star Science with the FIRE Spectrograph

163   0   0.0 ( 0 )
 Added by Adam J. Burgasser
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Folded-port InfraRed Echellette (FIRE) has recently been commissioned on the Magellan 6.5m Baade Telescope. This single object, near-infrared spectrometer simultaneously covers the 0.85-2.45 micron window in both cross-dispersed (R ~ 6000) or prism-dispersed (R ~ 250-350) modes. FIREs compact configuration, high transmission optics and high quantum efficiency detector provides considerable sensitivity in the near-infrared, making it an ideal instrument for studies of cool stars and brown dwarfs. Here we present some of the first cool star science results with FIRE based on commissioning and science verification observations, including evidence of clouds in a planetary-mass brown dwarf, accretion and jet emission in the low-mass T Tauri star TWA 30B, radial velocities of T-type brown dwarfs, and near-infrared detection of a debris disk associated with the DAZ white dwarf GALEX 1931+01.



rate research

Read More

152 - Philip W. Lucas 2010
We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the UKIDSS Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature at 1.275 um. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d=4.1{-0.5}{+0.6} pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/IRAC we measure H-[4.5] = 4.71. It is the coolest brown dwarf presently known -- the only known T dwarf that is redder in H-[4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N band photometry, is L = 9.2 +/- 3.1x10^{-7} Lsun. Using a comparison with well studied T8.5 and T9 dwarfs we deduce Teff=520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J=16.52, UGPS 0722-05 is the brightest T dwarf discovered by UKIDSS so far. It offers opportunities for future study via high resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.
The Wide Field Infrared Survey Telescope (WFIRST) will monitor $sim 2$ deg$^2$ toward the Galactic bulge in a wide ($sim 1-2~mu$m) W149 filter at 15-minute cadence with exposure times of $sim$50s for 6 seasons of 72 days each, for a total $sim$41,000 exposures taken over $sim$432 days, spread over the 5-year prime mission. This will be one of the deepest exposures of the sky ever taken, reaching a photon-noise photometric precision of 0.01 mag per exposure and collecting a total of $sim 10^9$ photons over the course of the survey for a W149$_{rm AB}sim 21$ star. Of order $4 times 10^7$ stars will be monitored with W149$_{rm AB}$<21, and 10$^8$ stars with W145$_{rm AB}$<23. The WFIRST microlensing survey will detect $sim$54,000 microlensing events, of which roughly 1% ($sim$500) will be due to isolated black holes, and $sim$3% ($sim$1600) will be due to isolated neutron stars. It will be sensitive to (effectively) isolated compact objects with masses as low as the mass of Pluto, thereby enabling a measurement of the compact object mass function over 10 orders of magnitude. Assuming photon-noise limited precision, it will detect $sim 10^5$ transiting planets with sizes as small as $sim 2~R_oplus$, perform asteroseismology of $sim 10^6$ giant stars, measure the proper motions to $sim 0.3%$ and parallaxes to $sim 10%$ for the $sim 6 times 10^6$ disk and bulge stars in the survey area, and directly detect $sim 5 times 10^3$ Trans-Neptunian objects (TNOs) with diameters down to $sim 10$ km, as well as detect $sim 10^3$ occulations of stars by TNOs during the survey. All of this science will completely serendipitous, i.e., it will not require modifications of the WFIRST optimal microlensing survey design. Allowing for some minor deviation from the optimal design, such as monitoring the Galactic center, would enable an even broader range of transformational science.
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramatic increase in the number and quality of classical pulsator observations, providing unprecedented possibilities to study stellar physics and galactic stellar populations. In this white paper, we describe key science questions and necessary facilities to continue the asteroseismology revolution into the 2020s.
The $sim500$, Myr A2IV star HR 1645 has one of the most significant low-amplitude accelerations of nearby early-type stars measured from a comparison of the {it Hipparcos} and {it Gaia} astrometric catalogues. This signal is consistent with either a stellar companion with a moderate mass ratio ($qsim0.5$) on a short period ($P<1$,yr), or a substellar companion at a separation wide enough to be resolved with ground-based high contrast imaging instruments; long-period equal mass ratio stellar companions that are also consistent with the measured acceleration are excluded with previous imaging observations. The small but significant amplitude of the acceleration made HR 1645 a promising candidate for targeted searches for brown dwarf and planetary-mass companions around nearby, young stars. In this paper we explore the origin of the astrometric acceleration by modelling the signal induced by a wide-orbit M8 companion discovered with the Gemini Planet Imager, as well as the effects of an inner short-period spectroscopic companion discovered a century ago but not since followed-up. We present the first constraints on the orbit of the inner companion, and demonstrate that it is a plausible cause of the astrometric acceleration. This result demonstrates the importance of vetting of targets with measured astrometric acceleration for short-period stellar companions prior to conducting targeted direct imaging surveys for wide-orbit substellar companions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا