Do you want to publish a course? Click here

Magnetic fields in M-dwarfs: quantitative results from detailed spectral synthesis in FeH lines

102   0   0.0 ( 0 )
 Added by Denis Shulyak Dr.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong surface magnetic fields are ubiquitously found in M-dwarfs with mean intensities on the order of few thousand Gauss-three orders of magnitude higher than the mean surface magnetic field of the Sun. These fields and their interaction with photospheric convection are the main source of stellar activity, which is of big interest to study links between parent stars and their planets. Moreover, the understanding of stellar magnetism, as well as the role of different dynamo-actions in particular, is impossible without explaining magnetic fields in M-dwarfs. Measuring magnetic field intensities and geometries in such cool objects, however, is strongly limited to our ability to simulate the Zeeman effect in molecular lines. In this work, we present quantitative results of modelling and analysis of the magnetic fields in selected M-dwarfs in FeH Wing-Ford lines and strong atomic lines. Some particular FeH lines are found to be the excellent probes of the magnetic field.



rate research

Read More

77 - Oleg Kochukhov 2020
Magnetic fields play a fundamental role for interior and atmospheric properties of M dwarfs and greatly influence terrestrial planets orbiting in the habitable zones of these low-mass stars. Determination of the strength and topology of magnetic fields, both on stellar surfaces and throughout the extended stellar magnetospheres, is a key ingredient for advancing stellar and planetary science. Here modern methods of magnetic field measurements applied to M-dwarf stars are reviewed, with an emphasis on direct diagnostics based on interpretation of the Zeeman effect signatures in high-resolution intensity and polarisation spectra. Results of the mean field strength measurements derived from Zeeman broadening analyses as well as information on the global magnetic geometries inferred by applying tomographic mapping methods to spectropolarimetric observations are summarised and critically evaluated. The emerging understanding of the complex, multi-scale nature of M-dwarf magnetic fields is discussed in the context of theoretical models of hydromagnetic dynamos and stellar interior structure altered by magnetic fields.
We present synthetic FeH band spectra in the z-filter range for several M-dwarf models with logg=3.0-5.0 [cgs] and Teff=2800K -3450K. Our aim is to characterize convective velocities in M-dwarfs and to give a rough estimate of the range in which 3D-atmosphere treatment is necessary and where 1D-atmosphere models suffice for the interpretation of molecular spectral features. This is also important in order to distinguish between the velocity-broadening and the rotational- or Zeeman-broadening. The synthetic spectra were calculated using 3D CO5BOLD radiative-hydrodynamic (RHD) models and the line synthesis code LINFOR3D. We used complete 3D-models and high resolution 3D spectral synthesis for the detailed study of some well isolated FeH lines. The FeH line strength shows a dependence on surface gravity and effective temperature and could be employed to measure both quantities in M-type objects. The line width is related to the velocity-field in the model stars, which depends strongly on surface gravity. Furthermore, we investigate the velocity-field in the 3D M-dwarf models together with the related micro- and macro-turbulent velocities in the 1D case. We also search for effects on the lineshapes.
We present an investigation of the velocity fields in early to late M-type star hydrodynamic models, and we simulate their influence on FeH molecular line shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K and 4000 K. Our aim is to characterize the Teff- and log g -dependence of the velocity fields and express them in terms of micro- and macro-turbulent velocities in the one dimensional sense. We present also a direct comparison between 3D hydrodynamical velocity fields and 1D turbulent velocities. The velocity fields strongly affect the line shapes of FeH, and it is our goal to give a rough estimate for the log g and Teff parameter range in which 3D spectral synthesis is necessary and where 1D synthesis suffices. In order to calculate M-star structure models we employ the 3D radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these models is performed with the line synthesis code LINFOR3D. We describe the 3D velocity fields in terms of a Gaussian standard deviation and project them onto the line of sight to include geometrical and limb-darkening effects. The micro- and macro-turbulent velocities are determined with the Curve of Growth method and convolution with a Gaussian velocity profile, respectively. To characterize the log g and Teff dependence of FeH lines, the equivalent width, line width, and line depth are regarded. The velocity fields in M-stars strongly depend on log g and Teff. They become stronger with decreasing log g and increasing Teff.
The magnetic white dwarfs (MWDs) are found either isolated or in interacting binaries. They divide into two groups: a high field group (0.1-1,000MegaGauss) comprising some 13% of all white dwarfs (WDs), and a low field group (B<0.1MG) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin. The other is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the merging binary hypothesis. Several studies have raised the possibility of the detection of planets around MWDs. Rocky planets may be discovered by the detection of anomalous atmospheric heating of the MWD. Planetary remains have recently revealed themselves in the atmospheres of about 25% of WDs that are polluted by elements such as Ca, Si, and often also Mg, Fe, Na. This pollution has been explained by ongoing accretion of planetary debris. The study of isolated and accreting MWDs is likely to continue to yield exciting discoveries for many years to come.
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super Jupiter residing in the outer regions of the planetary system of the white dwarf is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا