Do you want to publish a course? Click here

Carbon-Chain and Organic Molecules around Very Low-Luminosity Protostellar Objects of L1521F-IRS and IRAM 04191+1522

108   0   0.0 ( 0 )
 Added by Shigehisa Takakuwa
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed dense gas around the Very Low-Luminosity Ob jects (VeLLOs) L1521F-IRS and IRAM 04191+1522 in carbon-chain and organic molecular lines with the Nobeyama 45 m telescope. Towards L1521F-IRS, carbon-chain lines of CH3CCH (50-40), C4H (17/2-15/2), and C3H2 (212-101) are 1.5 - 3.5 times stronger than those towards IRAM 04191+1522, and the abundances of the carbon-chain molecules towards L1521F-IRS are 2 to 5 times higher than those towards IRAM 04191+1522. Mapping observations of these carbon-chain molecular lines show that in L1521F the peak positions of these carbon-chain molecular lines are different from each other and there is no emission peak towards the VeLLO position, while in IRAM 04191+1522 these carbon-chain lines are as weak as the detection limits except for the C3H2 line. The observed chemical differentiation between L1521F and IRAM 04191+1522 suggests that the evolutionary stage of L1521F-IRS is younger than that of IRAM 04191+1522, consistent with the extent of the associated outflows seen in the 13CO (1-0) line. The non-detection of the organic molecular lines of CH3OH (6-2-7-1 E) and CH3CN (60-50) implies that the warm (~ 100 K) molecular-desorbing region heated by the central protostar is smaller than ~ 100 AU towards L1521F-IRS and IRAM 04191+1522, suggesting the young age of these VeLLOs. We propose that the chemical status of surrounding dense gas can be used to trace the evolutionary stages of VeLLOs.



rate research

Read More

120 - Xuepeng Chen 2012
We present high angular resolution observations of the Class 0 protostar IRAM04191+1522, using the Submillimeter Array (SMA). The SMA 1.3 mm continuum images reveal within IRAM04191+1522 two distinct sources with an angular separation of 7.8,$pm$,0.2$$. The two continuum sources are located in the southeast-northwest direction, with total gas masses of about 0.011 M_sun and about 0.005 M_sun, respectively. The southeastern source, associated with an infrared source seen in the Spitzer images, is the well-known Class 0 protostar with a bolometric luminosity of about 0.08 L_sun. The newly-discovered northwestern continuum source is not visible in the Spitzer images at wavelengths from 3.6 to 70 micron, and has an extremely low bolometric luminosity (< 0.03 L_sun). Complementary IRAM N2H+(1-0) data that probe the dense gas in the common envelope suggest that the two sources were formed through the rotational fragmentation of an elongated dense core. Furthermore, comparisons between IRAM04191+1522 and other protostars suggest that most cores with binary systems formed therein have ratios of rotational energy to gravitational energy $beta_{rm rot}$ > 1%. This is consistent with theoretical simulations and indicates that the level of rotational energy in a dense core plays an important role in the fragmentation process.
During the formation of stars, the accretion of the surrounding material toward the central object is thought to undergo strong luminosity outbursts, followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas phase formation and the recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas phase chemical network forming complex organic molecules in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores, without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas phase reaction branching ratios. In spite of the short outburst timescales of about one hundred years, abundance ratios of the considered species with respect to methanol higher than 10 % are predicted during outbursts due to their low binding energies relative to water and methanol that delay their recondensation during the cooling. Although the current luminosity of most embedded protostars would be too low to produce these complex species in hot core regions that can be observable with current sub-millimetric interferometers, previous luminosity outburst events would induce a formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
84 - S. Anderl , S. Maret , S. Cabrit 2020
Context. The process of mass accretion in the earliest phases of star formation is still not fully understood: Does the accretion rate smoothly decline with the age of the protostar or are there short, intermittent accretion bursts? Aims. We aim to explore whether or not the observed C$^{18}$O and N$_2$H$^+$ emission pattern towards the VeLLO IRAM 04191+1522 can be understood in the framework of a scenario where the emission is chemically tracing a past accretion burst. Methods.We used high-angular-resolution Plateau de Bure Interferometer (PdBI) observations of C$^{18}$O and N$_2$H$^+$ towards IRAM 04191+1522 that were obtained as part of the CALYPSO IRAM Large Program. We model these observations using a chemical code with a time-dependent physical structure coupled with a radiative transfer module, where we allow for variations in the source luminosity. Results. We find that the N$_2$H$^+$ line emission shows a central hole, while the C$^{18}$O emission is compact. The morphology of these two lines cannot be reproduced with a constant luminosity model based on the present-day internal luminosity (0.08 L$_{sun}$). However, the N$_2$H$^+$ peaks are consistent with a constant-luminosity model of 12 L$_{sun}$. Using a model with time-dependent temperature and density profiles, we show that the observed N$_2$H$^+$ peak emission could indeed be caused by a past accretion burst. Such a burst should have occurred a couple of hundred years ago. Conclusions. We suggest that an accretion burst occurred in IRAM 04191+1522 in the recent past. If such bursts are common and sufficiently long in VeLLOs, they could lead to higher accretion onto the central object than their luminosity suggests. For IRAM 04191 in particular, our results yield an estimated final mass of 0.2 - 0.25 M$_{sun}$ by the end of the Class 0 phase, which would make this object a low-mass star rather than a brown dwarf.
[Abridged] We carried out optical polarimetry of five dense cores, (IRAM 04191, L1521F, L328, L673-7, and L1014) which are found to harbour VeLLO. This study was conducted mainly to understand the role played by the magnetic field in the formation of very low and substellar mass range objects using optical polarisation. The angular offsets between the envelope magnetic field direction (inferred from optical polarisation measurements) and the outflow position angles from the VeLLOs in IRAM 04191, L1521F, L328, L673-7, and L1014 are found to be 84$^circ$, 53$^circ$, 24$^circ$, 08$^circ$, and 15$^circ$, respectively. The mean value of the offsets for all the five clouds is $sim37^circ$. If we exclude IRAM 04191, the mean value reduces to become $sim25^circ$. In IRAM 04191, the offset between the projected envelope and the inner magnetic field (inferred from the submillimetre data from SCUPOL) is found to be $sim68^circ$. The inner magnetic field, however, is found to be nearly aligned with the projected position angles of the minor axis, the rotation axis of the cloud, and the outflow from the IRAM 04191-IRS. We discuss a possible explanation for the nearly perpendicular orientation between the envelope and core scale magnetic fields in IRAM04191. The angular offset between the envelope magnetic field direction and the minor axis of IRAM 04191, L1521F, L673-7, and L1014 are 82$^circ$, 60$^circ$, 47$^circ$, and 55$^circ$, respectively. The mean value of the offsets between the envelope magnetic field and the minor axis position angles for the four cores is found to be $sim60^circ$. The results obtained from our study on the limited sample of five cores with VeLLOs show that the outflows in three of them tend to nearly align with the envelope magnetic field.
We have analyzed ALMA Cycle 5 data in Band 4 toward three low-mass young stellar objects (YSOs), IRAS 03235+3004 (hereafter IRAS 03235), IRAS 03245+3002 (IRAS 03245), and IRAS 03271+3013 (IRAS 03271), in the Perseus region. The HC$_{3}$N ($J=16-15$; $E_{rm {up}}/k = 59.4$ K) line has been detected in all of the target sources, while four CH$_{3}$OH lines ($E_{rm {up}}/k = 15.4-36.3$ K) have been detected only in IRAS 03245. Sizes of the HC$_{3}$N distributions ($sim 2930-3230$ au) in IRAS 03235 and IRAS 03245 are similar to those of the carbon-chain species in the warm carbon chain chemistry (WCCC) source L1527. The size of the CH$_{3}$OH emission in IRAS 03245 is $sim 1760$ au, which is slightly smaller than that of HC$_{3}$N in this source. We compare the CH$_{3}$OH/HC$_{3}$N abundance ratios observed in these sources with predictions of chemical models. We confirm that the observed ratio in IRAS 03245 agrees with the modeled values at temperatures around 30--35 K, which supports the HC$_{3}$N formation by the WCCC mechanism. In this temperature range, CH$_{3}$OH does not thermally desorb from dust grains. Non-thermal desorption mechanisms or gas-phase formation of CH$_{3}$OH seem to work efficiently around IRAS 03245. The fact that IRAS 03245 has the highest bolometric luminosity among the target sources seems to support these mechanisms, in particular the non-thermal desorption mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا