Do you want to publish a course? Click here

Dijet Cross Section and Longitudinal Double Spin Asymmetry Measurements in Polarized Proton-proton Collisions at sqrt{s}=200 GeV at STAR

124   0   0.0 ( 0 )
 Added by Matthew Walker
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

These proceedings show the preliminary results of the dijet cross sections and the dijet longitudinal double spin asymmetries A_LL in polarized proton-proton collisions at sqrt{s} = 200 GeV at the mid-rapidity |eta| < 0.8. The integrated luminosity of 5.39 pb^{-1} collected during RHIC Run-6 was used in the measurements. The preliminary results are presented as functions of the dijet invariant mass M_jj. The dijet cross sections are in agreement with next-to-leading-order pQCD predictions. The A_LL is compared with theoretical predictions based on various parameterizations of polarized parton distributions of the proton. Projected precision of data analyzed to date from Run-9 are shown.



rate research

Read More

We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $sqrt{s}=200,mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x simeq 0.05$ to $x simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $sqrt{s}=200,mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $Delta g(x,Q^2)$ is positive for $x > 0.05$.
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
80 - Qinghua Xu 2005
Preliminary results for the longitudinal polarization of $Lambda$ and ${bar Lambda}$ hyperons in longitudinally polarized proton-proton collisions at $sqrt s$ = 200 GeV are presented. The $Lambda$($bar Lambda$) candidates are reconstructed at mid-rapidity ($|eta|<1$) with the time projection chamber of the STAR experiment at RHIC, using 0.5 pb$^{-1}$ collected in 2003 and 2004 with beam polarizations of up to 45%. Their mean longitudinal momentum fraction $x_F$ is about 8 $times$$10^{-3}$ and their mean transverse momentum $p_T$ is about 1.5 GeV. The analysis uses asymmetries of counts for different spin states of the colliding proton beams and does not require detailed knowledge of the detector acceptance. The preliminary $Lambda$(${bar Lambda}$) polarization values are consistent with zero within their statistical uncertainties of 0.05.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا