No Arabic abstract
Swift observed an outburst from the supergiant fast X-ray transients (SFXT) AX J1841.0-0536 on 2010 June 5, and followed it with XRT for 11 days. The X-ray light curve shows an initial flare followed by a decay and subsequent increase, as often seen in other SFXTs, and a dynamical range of ~1600. Our observations allow us to analyse the simultaneous broad-band (0.3-100 keV) spectrum of this source, for the first time down to 0.3 keV, can be fitted well with models usually adopted to describe the emission from accreting neutron stars in high-mass X-ray binaries, and is characterized by a high absorption (N_H~2x10^22 cm-2), a flat power law (Gamma~0.2), and a high energy cutoff. All of these properties resemble those of the prototype of the class, IGR J17544-2619, which underwent an outburst on 2010 March 4, whose observations we also discuss. We show how well AX J1841.0-0536 fits in the SFXT class, based on its observed properties during the 2010 outburst, its large dynamical range in X-ray luminosity, the similarity of the light curve (length and shape) to those of the other SFXTs observed by Swift, and the X-ray broad-band spectral properties.
Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries associated with OB supergiant companions and characterised by an X-ray flaring behaviour whose dynamical range reaches 5 orders of magnitude on timescales of a few hundred to thousands of seconds. Current investigations concentrate on finding possible mechanisms to inhibit accretion in SFXTs and explain their unusually low average X-ray luminosity. We present the Swift observations of an exceptionally bright outburst displayed by the SFXT IGR J17544-2619 on 2014 October 10 when the source achieved a peak luminosity of $3times10^{38}$ erg s$^{-1}$. This extends the total source dynamic range to $gtrsim$10$^6$, the largest (by a factor of 10) recorded so far from an SFXT. Tentative evidence for pulsations at a period of 11.6 s is also reported. We show that these observations challenge, for the first time, the maximum theoretical luminosity achievable by an SFXT and propose that this giant outburst was due to the formation of a transient accretion disc around the compact object.
IGR J18483-0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here we present the results of XMM-Newton, Swift, and Chandra observations of IGRJ18483-0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483-0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGRJ18483-0311 the measured spin-period derivative of -(1.3+-0.3)x10^(-9) s/s likely results from light travel time effects in the binary. We compare the most recent observational results of IGRJ18483-0311 and SAXJ1818.6-1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (~3.7d and ~1250s, respectively). Our observations, for a total of ~43ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from ~5E16 g to 1E21g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our observations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the onset of a gated mechanism is the most likely explanation for the observed light curve.
IGR J11215-5952 is a hard X-ray transient discovered in 2005 April by INTEGRAL and a member of the new class of HMXB, the Supergiant Fast X-ray Transients (SFXTs). While INTEGRAL and RXTE observations have shown that the outbursts occur with a periodicity of ~330 days, Swift data have recently demonstrated that the true outburst period is ~165 days. IGR J11215-5952 is the first discovered SFXT displaying periodic outbursts, which are possibly related to the orbital period. We performed a Guest Investigator observation with Swift that lasted 20ks and several follow-up Target of Opportunity (ToO) observations, for a total of ~32ks, during the expected apastron passage (defined assuming an orbital period of ~330 days), between 2008 June 16 and July 4. The characteristics of this apastron outburst are quite similar to those previously observed during the periastron outburst of 2007 February 9. The mean spectrum of the bright peaks can be fit with an absorbed power law model with a photon index of 1 and an absorbing column of 1E22 cm^-2. This outburst reached luminosities of ~1E36 erg/s (1-10keV), comparable with the ones measured in 2007. The light curve can be modelled with the parameters obtained by Sidoli et al. (2007) for the 2007 February 9 outburst, although some differences can be observed in its shape. The properties of the rise to this new outburst and the comparison with the previous outbursts allow us to suggest that the true orbital period of IGR J11215-5952 is very likely 164.6 days, and that the orbit is eccentric, with the different outbursts produced at the periastron passage, when the neutron star crosses the inclined equatorial wind from the supergiant companion. Based on a ToO observation performed on 2008 March 25-27, we can exclude that the period is 165/2 days. [Abridged]