Do you want to publish a course? Click here

SN 2009md: Another faint supernova from a low mass progenitor

343   0   0.0 ( 0 )
 Added by Morgan Fraser
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of $V = -4.63^{+0.3}_{-0.4}$ mag and a colour of $V-I = 2.29^{+0.25}_{-0.39}$ mag, corresponding to a progenitor luminosity of log $L$/L$_{odot}$ $sim4.54pm0.19$ dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with $M = 8.5_{-1.5}^{+6.5}$ M$_{odot}$. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of $^{56}$Ni ejected in the explosion to be $(5.4pm1.3) times 10^{-3}$ M$_{odot}$ from the luminosity on the radioactive tail, which is in agreement with the low $^{56}$Ni masses estimated for other sub-luminous Type IIP SNe. From the lightcurve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log $L$/L$_{odot}$ $sim4.3-5$ dex) and model luminosities after the second-dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core-collapse. This is now the third discovery of a low mass progenitor star producing a low energy explosion and low $^{56}$Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse supernova (7-8 M$_{odot}$).



rate research

Read More

195 - M. A. Hendry 2006
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/-4.3, 21.4 +/-3.5 and 25.1 +/-1.7Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the Brightest Supergiants Method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/-3.4Mpc. Using this distance we estimate that the ejected nickel mass in the explosion is 0.046(+0.031,-0.017) Msolar. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of mF814W = 24.3 +/-0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(+3,-2) Msolar. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12 Msolar for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd 8(+4,-2) Msolar and 2005cs 9(+3,-2) Msolar).
140 - C. Fremling , H. Ko , A. Dugas 2019
We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility (ZTF). ZTF18aalrxas was discovered while the optical emission was still rising towards the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (UV, optical) light-curves, and optical spectra spanning from $approx0.7$ d to $approx180$ d past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium (NLTE) model, that simultanously reproduces both the $rm ^{56}Ni$ powered bolometric light curve and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 $mathrm{M}_{odot}$) and the total ejecta mass (1.7 $mathrm{M}_{odot}$) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius ($790-1050$ $mathrm{R}_{odot}$) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spetrum is modeled and analysed to constrain the amount of ejected oxygen ($0.3-0.5$ $mathrm{M}_{odot}$) and the total hydrogen mass ($approx0.15$ $mathrm{M}_{odot}$) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low ($12-13$ $mathrm{M}_{odot}$) Zero Age Main Sequence mass progenitor. The light curves and spectra of ZTF18aalrxas are not consistent with massive single star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.
We have identified a progenitor candidate in archival Hubble Space Telescope (HST) images for the Type Ic SN 2017ein in NGC 3938, pinpointing the candidates location via HST Target-of-Opportunity imaging of the SN itself. This would be the first identification of a stellar-like object as a progenitor candidate for any Type Ic supernova to date. We also present observations of SN 2017ein during the first ~49 days since explosion. We find that SN 2017ein most resembles the well-studied Type Ic SN 2007gr. We infer that SN 2017ein experienced a total visual extinction of A_V~1.0--1.9 mag, predominantly because of dust within the host galaxy. Although the distance is not well known, if this object is the progenitor, it was likely of high initial mass, ~47--48 M_sun if a single star, or ~60--80 M_sun if in a binary system. However, we also find that the progenitor candidate could be a very blue and young compact cluster, further implying a very massive (>65 M_sun) progenitor. Furthermore, the actual progenitor might not be associated with the candidate at all and could be far less massive. From the immediate stellar environment, we find possible evidence for three different populations; if the SN progenitor was a member of the youngest population, this would be consistent with an initial mass of ~57 M_sun. After it has faded, the SN should be reobserved at high spatial resolution and sensitivity, to determine whether the candidate is indeed the progenitor.
107 - Justyn Maund 2016
We present an analysis of late-time Hubble Space Telescope Wide Field Camera 3 and Wide Field Planetary Camera 2 observations of the site of the Type Ic SN 2007gr in NGC 1058. The SN is barely recovered in the late-time WFPC2 observations, while a possible detection in the later WFC3 data is debatable. These observations were used to conduct a multiwavelength study of the surrounding stellar population. We fit spatial profiles to a nearby bright source that was previously proposed to be a host cluster. We find that, rather than being an extended cluster, it is consistent with a single point-like object. Fitting stellar models to the observed spectral energy distribution of this source, we conclude it is A1-A3 Yellow Supergiant, possibly corresponding to a star with $M_{ZAMS} = 40M_{odot}$. SN 2007gr is situated in a massive star association, with diameter of $approx 300,mathrm{pc}$. We present a Bayesian scheme to determine the properties of the surrounding massive star population, in conjunction with the Padova isochrones. We find that the stellar population, as observed in either the WFC3 and WFPC2 observations, can be well fit by two age distributions with mean ages: ~6.3 Myr and ~50 Myr. The stellar population is clearly dominated by the younger age solution (by factors of 3.5 and 5.7 from the WFPC2 and WFC3 observations, respectively), which corresponds to the lifetime of a star with $M_{ZAMS} sim 30M_{odot}$. This is strong evidence in favour of the hypothesis that SN 2007gr arose from a massive progenitor star, possibly capable of becoming a Wolf-Rayet star.
118 - Tobias Melson 2015
We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino transport. The progenitor is a nonrotating, zero-metallicity 9.6 Msun star with an iron core. While in spherical symmetry outward shock acceleration sets in later than 300 ms after bounce, a successful explosion starts at ~130 ms postbounce in two dimensions (2D). The 3D model explodes at about the same time but with faster shock expansion than in 2D and a more quickly increasing and roughly 10 percent higher explosion energy of >10^50 erg. The more favorable explosion conditions in 3D are explained by lower temperatures and thus reduced neutrino emission in the cooling layer below the gain radius. This moves the gain radius inward and leads to a bigger mass in the gain layer, whose larger recombination energy boosts the explosion energy in 3D. These differences are caused by less coherent, less massive, and less rapid convective downdrafts associated with postshock convection in 3D. The less violent impact of these accretion downflows in the cooling layer produces less shock heating and therefore diminishes energy losses by neutrino emission. We thus have, for the first time, identified a reduced mass accretion rate, lower infall velocities, and a smaller surface filling factor of convective downdrafts as consequences of 3D postshock turbulence that facilitate neutrino-driven explosions and strengthen them compared to the 2D case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا