Do you want to publish a course? Click here

T(13) Flavor Symmetry and Decaying Dark Matter

194   0   0.0 ( 0 )
 Added by Hiroshi Okada
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a new flavor symmetric model with non-Abelian discrete symmetry T_{13}. The T_{13} group is isomorphic to Z_{13} rtimes Z_3, and it is the minimal group having two complex triplets as the irreducible representations. We show that the T_{13} symmetry can derive lepton masses and mixings consistently. Moreover, if we assume a gauge-singlet fermionic decaying dark matter, its decay operators are also constrained by the T_{13} symmetry so that only dimension six operators of leptonic decay are allowed. We find that the cosmic-ray anomalies reported by PAMELA and Fermi-LAT are explained by decaying dark matter controlled by the T_{13} flavor symmetry.



rate research

Read More

We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.
We investigate a model in which Dark Matter is stabilized by means of a Z2 parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino mixing. In our A4 example the standard model is extended by three extra Higgs doublets and the Z2 parity emerges as a remnant of the spontaneous breaking of A4 after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
Recently the AMS-02 experiment has released the data of positron fraction with much small statistical error. Because of the small error, it is no longer easy to fit the data with a single dark matter for a fixed diffusion model and dark matter profile. In this paper, we propose a new interpretation of the data that it originates from decay of two dark matter. This interpretation gives a rough threshold of the lighter DM component. When DM decays into leptons, the positron fraction in the cosmic ray depends on the flavor of the final states, and this is fixed by imposing non-Abelian discrete symmetry in our model. By assuming two gauge-singlet fermionic decaying DM particles, we show that a model with non-Abelian discrete flavor symmetry, e.g. $T_{13}$, can give a much better fitting to the AMS-02 data compared with single dark matter scenario. Few dimension six operators of universal leptonic decay of DM particles are allowed in our model since its decay operators are constrained by the $T_{13}$ symmetry. We also show that the lepton masses and mixings are consistent with current experimental data, due to the flavor symmetry.
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around $1.4$ TeV. In this paper, we consider the minimal gauged $U(1)_{B-L}$ model with a right-handed neutrino (RHN) dark matter (DM) and interpret the DAMPE peak with a late-time decay of the RHN DM into $e^pm W^mp$. We find that a DM lifetime $tau_{DM} sim 10^{28}$ s can fit the DAMPE peak with a DM mass $m_{DM}=3$ TeV. This favored lifetime is close to the current bound on it by Fermi-LAT, our decaying RHN DM can be tested once the measurement of cosmic gamma ray flux is improved. The RHN DM communicates with the Standard Model particles through the $U(1)_{B-L}$ gauge boson ($Z^prime$ boson), and its thermal relic abundance is controlled by only three free parameters: $m_{DM}$, the $U(1)_{B-L}$ gauge coupling ($alpha_{BL}$), and the $Z^prime$ boson mass ($m_{Z^prime}$). For $m_{DM}=3$ TeV, the rest of the parameters are restricted to be $m_{Z^prime}simeq 6$ TeV and $0.00807 leq alpha_{BL} leq 0.0149$, in order to reproduce the observed DM relic density and to avoid the Landau pole for the running $alpha_{BL}$ below the Planck scale. This allowed region will be tested by the search for a $Z^prime$ boson resonance at the future Large Hadron Collider.
It is shown that a decaying neutralino in a supergravity unified framework is a viable candidate for dark matter. Such a situation arises in the presence of a hidden sector with ultraweak couplings to the visible sector where the neutralino can decay into the hidden sectors lightest supersymmetric particle (LSP) with a lifetime larger than the lifetime of the universe. We present a concrete model where the MSSM/SUGRA is extended to include a hidden sector comprised of $U(1)_{X_1} times U(1)_{X_2}$ gauge sector and the LSP of the hidden sector is a neutralino which is lighter than the LSP neutralino of the visible sector. We compute the loop suppressed radiative decay of the visible sector neutralino into the neutralino of the hidden sector and show that the decay can occur with a lifetime larger than the age of the universe. The decaying neutralino can be probed by indirect detection experiments, specifically by its signature decay into the hidden sector neutralino and an energetic gamma ray photon. Such a gamma ray can be searched for with improved sensitivity at Fermi-LAT and by future experiments such as the Square Kilometer Array (SKA) and the Cherenkov Telescope Array (CTA). We present several benchmarks which have a natural suppression of the hadronic channels from dark matter annihilation and decays and consistent with measurements of the antiproton background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا