No Arabic abstract
We have studied the properties of giant star forming clumps in five z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{alpha}/[NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized, or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.
As part of the SINS/zC-SINF surveys of high-z galaxy kinematics, we derive the radial distributions of H-alpha surface brightness, stellar mass surface density, and dynamical mass at ~2 kpc resolution in 19 z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. From these data we infer the radial distribution of the Toomre Q-parameter for these main-sequence star forming galaxies (SFGs), covering almost two decades of stellar mass (10^9.6 to 10^11.5 solar masses). In more than half of our SFGs, the H-alpha distributions cannot be fit by a centrally peaked distribution, such as an exponential, but are better described by a ring, or the combination of a ring and an exponential. At the same time the kinematic data indicate the presence of a mass distribution more centrally concentrated than a single exponential distribution for 5 of the 19 galaxies. The resulting Q-distributions are centrally peaked for all, and significantly exceed unity there for three quarters of the SFGs. The occurrence of H-alpha rings and of large nuclear Q-values is strongly correlated, and is more common for the more massive SFGs. While our sample is small and there remain substantial uncertainties and caveats, our observations are consistent with a scenario in which cloud fragmentation and global star formation are secularly suppressed in gas rich high-z disks from the inside out, as the central stellar mass density of the disks grows.
We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detected but with lower FWHM ~ 485 km/s and [NII]/Halpha ~ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles, and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial to confirm the importance and energetics of the nuclear outflow phenomenon, and its connection to AGN activity and bulge growth.
With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravitational lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
We present the SINS/zC-SINF AO survey of 35 star-forming galaxies, the largest sample with deep adaptive optics-assisted (AO) near-infrared integral field spectroscopy at z~2. The observations, taken with SINFONI at the Very Large Telescope, resolve the Ha and [NII] line emission and kinematics on scales of ~1.5 kpc. In stellar mass, star formation rate, rest-optical colors and size, the AO sample is representative of its parent seeing-limited sample and probes the massive (M* ~ 2x10^9 - 3x10^11 Msun), actively star-forming (SFR ~ 10-600 Msun/yr) part of the z~2 galaxy population over a wide range in colors ((U-V)_rest ~ 0.15-1.5 mag) and half-light radii (R_e,H ~ 1-8.5 kpc). The sample overlaps largely with the main sequence of star-forming galaxies in the same redshift range to a similar K_AB = 23 magnitude limit; it has ~0.3 dex higher median specific SFR, ~0.1 mag bluer median (U-V)_rest color, and ~10% larger median rest-optical size. We describe the observations, data reduction, and extraction of basic flux and kinematic properties. With typically 3-4 times higher resolution and 4-5 times longer integrations (up to 23hr) than the seeing-limited datasets of the same objects, the AO data reveal much more detail in morphology and kinematics. The now complete AO observations confirm the majority of kinematically-classified disks and the typically elevated disk velocity dispersions previously reported based on subsets of the data. We derive typically flat or slightly negative radial [NII]/Ha gradients, with no significant trend with global galaxy properties, kinematic nature, or the presence of an AGN. Azimuthal variations in [NII]/Ha are seen in several sources and are associated with ionized gas outflows, and possible more metal-poor star-forming clumps or small companions. [Abridged]
High signal-to-noise, representative spectra of star-forming galaxies at z~2, obtained via stacking, reveal a high-velocity component underneath the narrow H-alpha and [NII] emission lines. When modeled as a single Gaussian, this broad component has FWHM > 1500 km/s; when modeled as broad wings on the H-alpha and [NII] features, it has FWHM > 500 km/s. This feature is preferentially found in the more massive and more rapidly star-forming systems, which also tend to be older and larger galaxies. We interpret this emission as evidence of either powerful starburst-driven galactic winds or active supermassive black holes. If galactic winds are responsible for the broad emission, the observed luminosity and velocity of this gas imply mass outflow rates comparable to the star formation rate. On the other hand, if the broad line regions of active black holes account for the broad feature, the corresponding black holes masses are estimated to be an order of magnitude lower than those predicted by local scaling relations, suggesting a delayed assembly of supermassive black holes with respect to their host bulges.