Large discrepancies between quasi-free neutron-neutron (nn) cross section data from neutron-deuteron (nd) breakup and theoretical predictions based on standard nucleon-nucleon (NN) and three-nucleon (3N) forces are pointed out. The nn 1S0 interaction is shown to be dominant in that configuration and has to be increase to bring theory and data into agreement. Using the next-to-leading order (NLO) 1S0 interaction of chiral perturbation theory (chiPT) we demonstrate that the nn QFS cross section only slightly depends on changes of the nn scattering length but is very sensitive to variations of the effective range parameter. In order to account for the reported discrepancies one must decrease the nn effective range parameter by about 12 % from its value implied by 19charge symmetry and charge independence of nuclear forces.
We use nucleon-nucleon phase shifts obtained from experimental data, together with the chiral expansion for the long-distance part of the NN interaction, to obtain information about the short-distance piece of the NN potential that is at work in the 1S0 channel. We find that if the scale R that defines the separation between long- and short- distance is chosen to be lsim 1.8 fm then the energy dependence produced by short-distance dynamics is well approximated by a two-term polynomial for Tlab < 200 MeV. We also find that a quantitative description of NN dynamics is possible, at least in this channel, if one treats the long-distance parts of the chiral NN potential in perturbation theory. However, in order to achieve this we have to choose a separation scale R that is larger than 1.0 fm.
In this paper, the in-medium $NNrightarrow NDelta$ cross section is calculated in the framework of the one-boson exchange model by including the isovector mesons, i.e. $delta$ and $rho$ mesons. Due to the isospin exchange in the $NNrightarrow NDelta$ process, the vector self-energies of the outgoing particles are modified relative to the incoming particles in isospin asymmetric nuclear matter, and it leads to the effective energies of the incoming $NN$ pair being different from the outgoing $NDelta$ pair. This effect is investigated in the calculation of the in-medium $NNrightarrow NDelta$ cross section. With the corrected energy conservation, the cross sections of the $Delta^{++}$ and $Delta^+$ channels are suppressed, and the cross sections of the $Delta^0$ and $Delta^-$ channels are enhanced relative to the results obtained without properly considering the potential energy changes. Our results further confirm the dependence of medium correction factor, $R=sigma_{ NNrightarrow NDelta}^*/sigma_{NNrightarrow NDelta}^{text{free}}$, on the charge state of $NNrightarrow NDelta$ especially around the threshold energy, but the isospin splitting of medium correction factor $R$ becomes weak at high beam energies.
The in-medium $NNrightarrow NDelta$ cross section and its differential cross section in isospin asymmetric nuclear medium are investigated in the framework of the one-boson exchange model by including the isovector mesons, i.e., $delta$ and $rho$ mesons. Our results show that the in-medium $NNrightarrow NDelta$ cross sections are suppressed with density increasing, and the differential cross sections become isotropic with the density increasing at the beam energy around the $Delta$ threshold energy. The isospin splitting on the medium correction factor, $R=sigma_{ NNrightarrow NDelta}^*/sigma_{NNrightarrow NDelta}^{text{free}}$ is observed for different channels of $NNto NDelta$, especially around the threshold energy for all the effective Lagrangian parameters. By analyzing the selected effective Lagrangian parameters, our results show that the larger effective mass is, the weaker medium correction $R$ is.
We explore the influence of in-medium nucleon-nucleon cross section, symmetry potential and impact parameter on isospin sensitive observables in intermediate-energy heavy-ion collisions with the ImQMD05 code, a modified version of Quantum Molecular Dynamics model. At incident velocities above the Fermi velocity, we find that the density dependence of symmetry potential plays a more important role on the double neutron to proton ratio $DR(n/p)$ and the isospin transport ratio $R_i$ than the in-medium nucleon-nucleon cross sections, provided that the latter are constrained to a fixed total NN collision rate. We also explore both $DR(n/p)$ and $R_i$ as a function of the impact parameter. Since the copious production of intermediate mass fragments is a distinguishing feature of intermediate-energy heavy-ion collisions, we examine the isospin transport ratios constructed from different groups of fragments. We find that the values of the isospin transport ratios for projectile rapidity fragments with $Zge20$ are greater than those constructed from the entire projectile rapidity source. We believe experimental investigations of this phenomenon can be performed. These may provide significant tests of fragmentation time scales predicted by ImQMD calculations.
How to extract an electric dipole (E1) breakup cross section sigma(E1) from one- neutron removal cross sections measured by using 12C and 208Pb targets, sigma_(-1n)^C and sigma_(-1n)^Pb, respectively, is discussed. It is shown that within about 5% error, sigma(E1) can be obtained by subtracting Gamma sigma_(-1n)^C from sigma_(- 1n)^Pb, as assumed in preceding studies. However, for the reaction of weakly-bound projectiles, the scaling factor Gamma is found to be two times as large as that usually adopted. As a result, we obtain 13-20% smaller sigma(E1) of 31Ne at 250 MeV/nucleon than extracted in a previous analysis of experimental data. By compiling the values of Gamma obtained for several projectiles, Gamma=(2.30 +/- 0.41)exp(- S_n)+(2.43 +/- 0.21) is obtained, where S_n is the neutron separation energy. The target mass number dependence of the nuclear parts of the one-neutron removal cross section and the elastic breakup cross section is also investigated.
H. Witala
,W. Gloeckle
.
(2010)
.
"The nn quasi-free nd breakup cross section: discrepancies to theory and implications on the 1S0 nn force"
.
Henryk Witala
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا