Do you want to publish a course? Click here

Spin and orbital mechanisms of the magneto-gyrotropic photogalvanic effects in GaAs/AlGaAs quantum well structures

203   0   0.0 ( 0 )
 Added by Sergey Ganichev
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the study of the linear and circular magneto-gyrotropic photogalvanic effect (MPGE) in GaAs/AlGaAs quantum well structures. Using the fact that in such structures the Lande-factor g* depends on the quantum well (QW) width and has different signs for narrow and wide QWs, we succeeded to separate spin and orbital contributions to both MPGEs. Our experiments show that, for most quantum well widths, the PGEs are mainly driven by spin-related mechanisms, which results in a photocurrent proportional to the g* factor. In structures with a vanishingly small g* factor, however, linear and circular MPGE are also detected, proving the existence of orbital mechanisms.



rate research

Read More

We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin-dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers.
155 - S. Stachel , P. Olbrich , C. Zoth 2011
We report on the observation of linear and circular magnetogyrotropic photogalvanic effects in InSb/AlInSb quantum well structures. We show that intraband (Drude-like) absorption of terahertz radiation in the heterostructures causes a dc electric current in the presence of an in-plane magnetic field. The photocurrent behavior upon variation of the magnetic field strength, temperature and wavelength is studied. We show that at moderate magnetic fields the photocurrent exhibits a typical linear field dependence. At high magnetic fields, however, it becomes nonlinear and inverses its sign. The experimental results are analyzed in terms of the microscopic models based on asymmetric relaxation of carriers in the momentum space. We demonstrate that the observed nonlinearity of the photocurrent is caused by the large Zeeman spin splitting in InSb/AlInSb structures and an interplay of the spin-related and spin-independent roots of the magnetogyrotropic photogalvanic effect.
117 - J. Karch 2009
We report on the circular and linear photogalvanic effects caused by free-carrier absorption of terahertz radiation in electron channels on (001)-oriented and miscut silicon surfaces. The photocurrent behavior upon variation of the radiation polarization state, wavelength, gate voltage and temperature is studied. We present the microscopical and phenomenological theory of the photogalvanic effects, which describes well the experimental results. In particular, it is demonstrated that the circular (photon-helicity sensitive) photocurrent in silicon-based structures is of pure orbital nature originating from the quantum interference of different pathways contributing to the absorption of monochromatic radiation.
The magneto-gyrotropic photogalvanic and spin-galvanic effects are observed in (0001)-oriented GaN/AlGaN heterojunctions excited by terahertz radiation. We show that free-carrier absorption of linearly or circularly polarized terahertz radiation in low-dimensional structures causes an electric photocurrent in the presence of an in-plane magnetic field. Microscopic mechanisms of these photocurrents based on spin-related phenomena are discussed. Properties of the magneto-gyrotropic and spin-galvanic effects specific for hexagonal heterostructures are analyzed.
We report on the observation of the magneto-photogalvanic effect (MPGE) due to inter-subband transitions in (001)-oriented GaAs quantum wells. This effect is related to the gyrotropic properties of the structures. It is shown that inter-subband absorption of linearly polarized radiation may lead to spin-related as well as spin independent photocurrents if an external magnetic field is applied in the plane of the quantum well. The experimental results are analyzed in terms of the phenomenological theory and microscopic models of MPGE based on either asymmetric optical excitation or asymmetric relaxation of carriers in k-space. We observed resonant photocurrents not only at oblique incidence of radiation but also at normal incidence demonstrating that conventionally applied selection rules for the inter-subband optical transitions are not rigorous.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا