No Arabic abstract
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual countrys role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors a higher tolerance of extreme crises compared to more globalized random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing the vulnerability of global economic system to extreme crises.
A symmetry-guided definition of time may enhance and simplify the analysis of historical series with recurrent patterns and seasonalities. By enforcing simple-scaling and stationarity of the distributions of returns, we identify a successful protocol of time definition in Finance. The essential structure of the stochastic process underlying the series can thus be analyzed within a most parsimonious symmetry scheme in which multiscaling is reduced in the quest of a time scale additive and independent of moment-order in the distribution of returns. At the same time, duration of periods in which markets remain inactive are properly quantified by the novel clock, and the corresponding (e.g., overnight) returns are consistently taken into account for financial applications.
We focus on the problem of how wealth is distributed among the units of a networked economic system. We first review the empirical results documenting that in many economies the wealth distribution is described by a combination of log--normal and power--law behaviours. We then focus on the Bouchaud--Mezard model of wealth exchange, describing an economy of interacting agents connected through an exchange network. We report analytical and numerical results showing that the system self--organises towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular we show that if the network displays a homogeneous density of links, the wealth distribution displays either the log--normal or the power--law form. This means that the first--order topological properties alone (such as the scale--free property) are not enough to explain the emergence of the empirically observed emph{mixed} form of the wealth distribution. In order to reproduce this nontrivial pattern, the network has to be heterogeneously divided into regions with variable density of links. We show new results detailing how this effect is related to the higher--order correlation properties of the underlying network. In particular, we analyse assortativity by degree and the pairwise wealth correlations, and discuss the effects that these properties have on each other.
The study of record statistics of correlated series is gaining momentum. In this work, we study the records statistics of the time series of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent $alpha$ lying in the range $1.5 le alpha le 1.8$. Further, the longest record ages follow the Fr{e}chet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that from the empirical stock data.
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous mixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
The goal of developing a firmer theoretical understanding of inhomogenous temporal processes -- in particular, the waiting times in some collective dynamical system -- is attracting significant interest among physicists. Quantifying the deviations in the waiting-time distribution away from one generated by a random process, may help unravel the feedback mechanisms that drive the underlying dynamics. We analyze the waiting-time distributions of high frequency foreign exchange data for the best executable bid-ask prices across all major currencies. We find that the lognormal distribution yields a good overall fit for the waiting-time distribution between currency rate changes if both short and long waiting times are included. If we restrict our study to long waiting-times, each currency pairs distribution is consistent with a power law tail with exponent near to 3.5. However for short waiting times, the overall distribution resembles one generated by an archetypal complex systems model in which boundedly rational agents compete for limited resources. Our findings suggest a gradual transition arises in trading behavior between a fast regime in which traders act in a boundedly rational way, and a slower one in which traders decisions are driven by generic feedback mechanisms across multiple timescales and hence produce similar power-law tails irrespective of currency type.