Do you want to publish a course? Click here

MUSTANG 3.3 Millimeter Continuum Observations of Class 0 Protostars

143   0   0.0 ( 0 )
 Added by Yancy L. Shirley
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indices (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic dust temperature within the central beam of our observations. We present constraints on the millimeter dust opacity index, beta, between 0.862 mm, 1.25 mm, and 3.3 mm. Beta_mm typically ranges from 1.0 to 2.4 for Class 0 sources. The relative contributions from disk emission and envelope emission are estimated at 3.3 mm. L483 is found to have negligible disk emission at 3.3 mm while L1527 is dominated by disk emission within the central beam. The beta_mm^disk <= 0.8 - 1.4 for L1527 indicates that grain growth is likely occurring in the disk. The photometry presented in this paper may be combined with future interferometric observations of Class 0 envelopes and disks.



rate research

Read More

The early stages of low-mass star formation are likely to be subject to intense ionization by protostellar energetic MeV particles. As a result, the surrounding gas is enriched in molecular ions, such as HCO$^{+}$ and N$_{2}$H$^{+}$. Nonetheless, this phenomenon remains poorly understood for Class 0 objects. Recently, based on Herschel observations taken as part of the key program Chemical HErschel Surveys of Star forming regions (CHESS), a very low HCO$^{+}$/N$_{2}$H$^{+}$ abundance ratio of about 3-4, has been reported toward the protocluster OMC-2 FIR4. This finding suggests a cosmic-ray ionization rate in excess of 10$^{-14}$ s$^{-1}$, much higher than the canonical value of $zeta$ = 3$times$10$^{-17}$ s$^{-1}$ (value expected in quiescent dense clouds). To assess the specificity of OMC-2 FIR4, we have extended this study to a sample of sources in low- and intermediate mass. More specifically, we seek to measure the HCO$^{+}$/N$_2$H$^{+}$ abundance ratio from high energy lines (J $ge$ 6) toward this source sample in order to infer the flux of energetic particles in the warm and dense gas surrounding the protostars. We use observations performed with the Heterodyne Instrument for the FarInfrared spectrometer on board the Herschel Space Observatory toward a sample of 9 protostars. We report HCO$^{+}$/N$_2$H$^{+}$ abundance ratios in the range of 5 up to 73 toward our source sample. The large error bars do not allow us to conclude whether OMC-2~FIR4 is a peculiar source. Nonetheless, an important result is that the measured HCO$^{+}$/N$_2$H$^{+}$ ratio does not vary with the source luminosity. At the present time, OMC-2 FIR4 remains the only source where a high flux of energetic particles is clearly evident. More sensitive and higher angular resolution observations are required to further investigate this process.
130 - John Tobin 2018
We present a characterization of the binary protostar system that is forming within a dense core in the isolated dark cloud BHR71. The pair of protostars, IRS1 and IRS2, are both in the Class 0 phase, determined from observations that resolve the sources from 1 um out to 250 um and from 1.3 mm to 1.3cm. The resolved observations enable the luminosities of IRS1 and IRS2 to be independently measured (14.7 and 1.7L_sun, respectively), in addition to the bolometric temperatures 68~K, and 38~K, respectively. The surrounding core was mapped in NH3 (1,1) with the Parkes radio telescope, and followed with higher-resolution observations from ATCA in NH3 (1,1) and 1.3cm continuum. The protostars were then further characterized with ALMA observations in the 1.3~mm continuum along with N2D+ (J=3-2), 12CO, 13CO, and C18O (J=2-1) molecular lines. The Parkes observations find evidence for a velocity gradient across the core surrounding the two protostars, while ATCA reveals more complex velocity structure toward the protostars within the large-scale gradient. The ALMA observations then reveal that the two protostars are at the same velocity in C18O, and N2H+ exhibits a similar velocity structure as NH3. However, the C18O kinematics reveal that the rotation on scales $<$1000~AU around IRS1 and IRS2 are in opposite directions. Taken with the lack of a systematic velocity difference between the pair, it is unlikely that their formation resulted from rotational fragmentation. We instead conclude that the binary system most likely formed via turbulent fragmentation of the core.
The IRDC SDC335.579-0.292 (SDC335) is a massive star-forming cloud found to be globally collapsing towards one of the most massive star forming cores in the Galaxy. SDC335 hosts three high-mass protostellar objects at early stages of their evolution and archival ALMA Cycle 0 data indicate the presence of at least one molecular outflow in the region. Observations of molecular outflows from massive protostellar objects allow us to estimate the accretion rates of the protostars as well as to assess the disruptive impact that stars have on their natal clouds. The aim of this work is to identify and analyse the properties of the protostellar-driven molecular outflows within SDC335 and use these outflows to help refine the properties of the protostars. We imaged the molecular outflows in SDC335 using new data from the ATCA of SiO and Class I CH$_3$OH maser emission (~3 arcsec) alongside observations of four CO transitions made with APEX and archival ALMA CO, $^{13}$CO (~1 arcsec), and HNC data. We introduced a generalised argument to constrain outflow inclination angles based on observed outflow properties. We used the properties of each outflow to infer the accretion rates on the protostellar sources driving them and to deduce the evolutionary characteristics of the sources. We identify three molecular outflows in SDC335, one associated with each of the known compact HII regions. The outflow properties show that the SDC335 protostars are in the early stages (Class 0) of their evolution, with the potential to form stars in excess of 50 M$_{odot}$. The measured total accretion rate onto the protostars is $1.4(pm 0.1) times 10^{-3}$M$_{odot}$ yr$^{-1}$, comparable to the total mass infall rate toward the cloud centre on parsec scales of 2.5$(pm 1.0) times 10^{-3}$M$_{odot}$ yr$^{-1}$, suggesting a near-continuous flow of material from cloud to core scales. [abridged].
136 - Xuepeng Chen 2013
We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approximately three (for MF) and four (for CSF) times larger than the values found among MS stars, with a similar range of separations. Furthermore, the observed fraction of high order multiple systems to binary systems in Class 0 protostars (0.50+/-0.09) is also larger than the fractions found in Class I YSOs (0.31+/-0.07) and MS stars (< 0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary systems shows a general trend in which companion star fraction increases with decreasing companion separation. We find that 67%+/-8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation.
64 - Miriam Rengel 2004
We report on a study of the thermal dust emission of the circumstellar envelopes of a sample of Class 0 sources. The physical structure (geometry, radial intensity profile, spatial temperature and spectral energy distribution) and properties (mass, size, bolometric luminosity (L_bol) and temperature (T_ bol), and age) of Class 0 sources are derived here in an evolutionary context. This is done by combining SCUBA imaging at 450 and 850 microm of the thermal dust emission of envelopes of Class 0 sources in the Perseus and Orion molecular cloud complexes with a model of the envelope, with the implementation of techniques like the blackbody fitting and radiative transfer calculations of dusty envelopes, and with the Smith evolutionary model for protostars. The modelling results obtained here confirm the validity of a simple spherical symmetric model envelope, and the assumptions about density and dust distributions following the standard envelope model. The spherically model reproduces reasonably well the observed SEDs and the radial profiles of the sources. The implications of the derived properties for protostellar evolution are illustrated by analysis of the L_bol, the T_bol, and the power-law index p of the density distribution for a sample of Class 0 sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا