No Arabic abstract
Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength $chi$ of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator $hat{J}_{x}$, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of $(2gamma)^{1/3}$ below super-Heisenberg limit $propto 1/N^{3/2}$ for particle number $N$ and the dephasing rate $1<!<gamma<N^{3/4}$. With a $hat{J}_y$ measurement, our analytical results confirm that the phase $phi=chi tsim 0$ can be detected at the limit even in the presence of the dephasing.
The goal of quantum metrology is the precise estimation of parameters using quantum properties such as entanglement. This estimation usually consists of three steps: state preparation, time evolution during which information of the parameters is encoded in the state, and readout of the state. Decoherence during the time evolution typically degrades the performance of quantum metrology and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative angle between the two directions affords Heisenberg-limited sensitivity. Moreover, our scheme based on Markvoian collective dephasing is robust against environmental noise, and it is possible to achieve the Heisenberg limit even under the effect of independent dephasing. Our counterintuitive results showing that the sensitivity is improved by using the decoherence pave the way to novel applications in quantum metrology.
The Heisenberg limit is the superior precision available by entanglement sensors. However, entanglementis fragile against dephasing, and there is no known quantum metrology protocol that can achieve Heisenberg limited sensitivity with the presence of independent dephasing. Here, we show that the Heisenberg limit is attainable under the effect of independent dephasing under conditions where the probe qubits decohere due to both target fields and local environments. To detect the target fields, we exploit the entanglement properties to decay much faster than the classical states due to collective noise while most of the previous schemes use a coherent phase shift from the target fields. Actually, if the temporally fluctuating target fields behave as Markovian collective dephasing, we can estimate the collective dephasing rate with a sensitivity at the Heisenberg limit under the effect of independent dephasing. Our work opens the possibility for robust Heisenberg-limited metrology.
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that, under equilibrium conditions, the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many-body system: this is due to the critical divergence of quantum fluctuations of the order parameter, which, via Heisenbergs inequalities, may lead to the critical suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing of one spin component, providing a scaling for the precision of interferometric parameter estimation which, in dimensions $d geq 2$, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in $d=infty$ (or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range of temperatures in $d=2$ and 3. This demonstrates the immediate metrological potential of equilibrium many-body states close to quantum criticality, which are accessible emph{e.g.} to atomic quantum simulators via elementary adiabatic protocols.
Two-mode interferometers, such as Michelson interferometer based on two spatial optical modes, lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. However, the experimental demonstration still remains elusive. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $left(left|0rightrangle +left|Nrightrangle right)/sqrt{2}$ are generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as $sim N^{-0.94}$. A $9.1$~$mathrm{dB}$ enhancement of the precision over the SNL at $N=12$, which is only $1.7$~$mathrm{dB}$ away from the HL, is achieved. Our experimental architecture is hardware efficient and can be combined with the quantum error correction techniques to fight against decoherence, thus promises the quantum enhanced sensing in practical applications.
Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T. On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1/T. However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1/T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1/T for an arbitrary time scale under the effect of dephasing. We use one-way quantum computing based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.