Do you want to publish a course? Click here

Limit on the mass of a long-lived or stable gluino

95   0   0.0 ( 0 )
 Added by Jonathan Roberts
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We reinterpret the generic CDF charged massive particle limit to obtain a limit on the mass of a stable or long-lived gluino. Various sources of uncertainty are examined. The $R$-hadron spectrum and scattering cross sections are modeled based on known low-energy hadron physics and the resultant uncertainties are quantified and found to be small compared to uncertainties from the scale dependence of the NLO pQCD production cross sections. The largest uncertainty in the limit comes from the unknown squark mass: when the squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407 GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the gluino mass. These limits apply for any gluino lifetime longer than $sim 30$ ns, and are the most stringent limits for such a long-lived or stable gluino.



rate research

Read More

Many models of dark matter predict long-lived particles (LLPs) that can give rise to striking signatures at the LHC. Existing searches for displaced vertices are however tailored towards heavy LLPs. In this work we show that this bias severely affects their sensitivity to LLPs with masses at the GeV scale. To illustrate this point we consider two dark sector models with light LLPs that decay hadronically: a strongly-interacting dark sector with long-lived exotic mesons, and a Higgsed dark sector with a long-lived dark Higgs boson. We study the sensitivity of an existing ATLAS search for displaced vertices and missing energy in these two models and find that current track and vertex cuts result in very low efficiency for light LLPs. To close this gap in the current search programme we suggest two possible modifications of the vertex reconstruction and the analysis cuts. We calculate projected exclusion limits for these modifications and show that they greatly enhance the sensitivity to LLPs with low mass or short decay lengths.
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.
In this paper, we point out a novel signature of physics beyond the Standard Model which could potentially be observed both at the Large Hadron Collider (LHC) and at future colliders. This signature, which emerges naturally within many proposed extensions of the Standard Model, results from the multiple displaced vertices associated with the successive decays of unstable, long-lived particles along the same decay chain. We call such a sequence of displaced vertices a tumbler. We examine the prospects for observing tumblers at the LHC and assess the extent to which tumbler signatures can be distinguished from other signatures of new physics which also involve multiple displaced vertices within the same collider event. As part of this analysis, we also develop a procedure for reconstructing the masses and lifetimes of the particles involved in the corresponding decay chains. We find that the prospects for discovering and distinguishing tumblers can be greatly enhanced by exploiting precision timing information such as would be provided by the CMS timing layer at the high-luminosity LHC. Our analysis therefore provides strong additional motivation for continued efforts to improve the timing capabilities of collider detectors at the LHC and beyond.
We have studied three realistic benchmark geometries for a new far detector GAZELLE to search for long-lived particles at the superkekb accelerator in Tsukuba, Japan. The new detector would be housed in the same building as Belle II and observe the same $e^+e^-$ collisions. To assess the discovery reach of GAZELLE, we have investigated three new physics models that predict long-lived particles: heavy neutral leptons produced in tau lepton decays, axion-like particles produced in $B$ meson decays, and new scalars produced in association with a dark photon, as motivated by inelastic dark matter. We do not find significant gains in the new physics discovery reach of GAZELLE compared to the Belle II projections for the same final states. The main reasons are the practical limitations on the angular acceptance and size of GAZELLE, effectively making it at most comparable to Belle II, even though backgrounds in the far detector could be reduced to low rates. A far detector for long-lived particles would be well motivated in the case of a discovery by Belle II, since decays inside GAZELLE would facilitate studies of the decay products. Depending on the placement of GAZELLE, searches for light long-lived particles produced in the forward direction or signals of a confining hidden force could also benefit from such a far detector. Our general findings could help guide the design of far detectors at future electron-positron colliders such as the ILC, FCC-ee or CEPC.
Run 5 of the HL-LHC era (and beyond) may provide new opportunities to search for physics beyond the standard model (BSM) at interaction point 2 (IP2). In particular, taking advantage of the existing ALICE detector and infrastructure provides an opportunity to search for displaced decays of beyond standard model long-lived particles (LLPs). While this proposal may well be preempted by ongoing ALICE physics goals, examination of its potential new physics reach provides a compelling comparison with respect to other LLP proposals. In particular, full event reconstruction and particle identification could be possible by making use of the existing L3 magnet and ALICE time projection chamber. For several well-motivated portals, the reach competes with or exceeds the sensitivity of MATHUSLA and SHiP, provided that a total integrated luminosity of approximately $100, text{fb}^{-1}$ could be delivered to IP2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا