No Arabic abstract
We present a quasipolynomial-time algorithm for solving the weak membership problem for the convex set of separable, i.e. non-entangled, bipartite density matrices. The algorithm decides whether a density matrix is separable or whether it is eps-away from the set of the separable states in time exp(O(eps^-2 log |A| log |B|)), where |A| and |B| are the local dimensions, and the distance is measured with either the Euclidean norm, or with the so-called LOCC norm. The latter is an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by quantum local operations and classical communication (LOCC) between the parties. We also obtain improved algorithms for optimizing over the set of separable states and for computing the ground-state energy of mean-field Hamiltonians. The techniques we develop are also applied to quantum Merlin-Arthur games, where we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC protocols, or when the verification procedure is formed by a measurement of small Euclidean norm. This answers a question posed by Aaronson et al (Theory of Computing 5, 1, 2009) and provides two new characterizations of the complexity class QMA, a quantum analog of NP. Our algorithm uses semidefinite programming to search for a symmetric extension, as first proposed by Doherty, Parrilo and Spedialieri (Phys. Rev. A, 69, 022308, 2004). The bound on the runtime follows from an improved de Finetti-type bound quantifying the monogamy of quantum entanglement, proved in (arXiv:1010.1750). This result, in turn, follows from a new lower bound on the quantum conditional mutual information and the entanglement measure squashed entanglement.
Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as $rho=(1-lambda)C_{rho}+lambda E_{rho}$, where $C_{rho}$ is a separable matrix whose rank equals that of $rho$ and the rank of $E_{rho}$ is strictly lower than that of $rho$. With the simple choice $C_{rho}=M_{1}otimes M_{2}$ we have a necessary condition of separability in terms of $lambda$, which is also sufficient if the rank of $E_{rho}$ equals 1. We give a first extension of this result to detect genuine entanglement in multipartite states and show a natural connection between the multipartite separability problem and the classification of pure states under stochastic local operations and classical communication (SLOCC). We argue that this approach is not exhausted with the first simple choices included herein.
We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some entanglement measures. We also provide a classification of entangled states with respect to their usefulness in quantum dense coding, and present some aspects of multipartite entanglement.
We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithms success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability. We end with a conjecture about the quantum query complexity of multivariate polynomial interpolation.
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations -- that is, correlations for which the number of measurements and number of measurement outcomes are fixed -- such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and from undecidability results of the third author for linear system nonlocal games.