Do you want to publish a course? Click here

Magnetic nanoparticles with bulk-like properties

139   0   0.0 ( 0 )
 Added by Oscar Iglesias
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic behavior of $Fe_{3-x}O_4$ nanoparticles synthesized either by high-temperature decomposition of an organic iron precursor or low-temperature co-precipitation in aqueous conditions, is compared. Transmission electron microscopy, X-ray absorption spectroscopy, X-ray magnetic circular dichroism and magnetization measurements show that nanoparticles synthesized by thermal decomposition display high crystal quality and bulk-like magnetic and electronic properties, while nanoparticles synthesized by co-precipitation show much poorer crystallinity and particle-like phenomenology, including reduced magnetization, high closure fields and shifted hysteresis loops. The key role of the crystal quality is thus suggested since particle-like behavior for particles larger than about 5 nm is only observed when they are structurally defective. These conclusions are supported by Monte Carlo simulations. It is also shown that thermal decomposition is capable of producing nanoparticles that, after further stabilization in physiological conditions, are suitable for biomedical applications such as magnetic resonance imaging or bio-distribution studies.



rate research

Read More

We demonstrate a remarkable equivalence in structure measured by total X-ray scattering methods between very small metallic nanoparticles and bulk metallic glasses (BMGs), thus connecting two disparate fields, shedding new light on both. Our results show that for nanoparticle diameters <5 nm the structure of Ni nanoparticles changes from fcc to the characteristic BMG-like structure, despite them being formed from a single element, an effect we call nano-metallic glass (NMG) formation. However, high-resolution TEM images of the NMG clusters exhibit lattice fringes indicating a locally well-ordered, rather than glassy, structure. These seemingly contradictory results may be reconciled by finding a locally ordered structure that is highly isotropic and we show that local icosahedral packing within 5 atomic shells explains this. Since this structure is stabilized only in the vicinity of a surface which highlights the importance of the presence of free volume in BMGs for stabilizing similar local clusters.
We report the structural, transport, electronic, and magnetic properties of Co$_2$FeGa Heusler alloy nanoparticles. The Rietveld refinements of x-ray diffraction (XRD) data with the space group Fm$bar {3}$m clearly demonstrates that the nanoparticles are of single phase. The particle size (D) decreases with increasing the SiO$_2$ concentration. The Bragg peak positions and the inter-planer spacing extracted from high-resolution transmission electron microscopy image and selected area electron diffraction are in well agreement with data obtained from XRD. The coercivity initially increases from 127~Oe to 208~Oe between D = 8.5~nm and 12.5~nm, following the D$^{-3/2}$ dependence and then decreases with further increasing D up to 21.5~nm with a D$^{-1}$ dependence, indicating the transition from single domain to multidomain regime. The effective magnetic anisotropic constant behaves similarly as coercivity, which confirms this transition. A complex scattering mechanisms have been fitted to explain the electronic transport properties of these nanoparticles. In addition we have studied core-level and valence band spectra using photoemission spectroscopy, which confirm the hybridization between $d$ states of Co/Fe. Further nanoparticle samples synthesized by co-precipitation method show higher saturation magnetization. The presence of Raman active modes can be associated with the high chemical ordering, which motivates for detailed temperature dependent structural investigation using synchrotron radiation and neutron sources.
119Sn nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T1) in SnO2 nanoparticles were measured as a function of temperature and compared with those of SnO2 bulk sample. A 15% loss of 119Sn NMR signal intensity for the nano sample compared to the bulk sample was observed. This is indicative of ferromagnetism from a small fraction of the sample. Another major finding is that the recovery of the 119Sn longitudinal nuclear magnetization in the nano sample follows a stretched exponential behavior, as opposed to that in bulk which is exponential. Further, the 119Sn 1/T1 at room temperature is found to be much higher for the nano sample than for its bulk counterpart. These results indicate the presence of magnetic fluctuations in SnO2 nanoparticles in contrast to the bulk (non-nano) which is diamagnetic. These local moments could arise from surface defects in the nanoparticles.
We implement the molecular beam epitaxy method to embed the black-phosphorus-like bismuth nanosheets into the bulk ferromagnet Cr$_2$Te$_3$. As a typical surfactant, bismuth lowers the surface tensions and mediates the layer-by-layer growth of Cr$_2$Te$_3$. Meanwhile, the bismuth atoms precipitate into black-phosphorus-like nanosheets with the lateral size of several tens of nanometers. In Cr$_2$Te$_3$ embedded with Bi-nanosheets, we observe simultaneously a large topological Hall effect together with the magnetic susceptibility plateau and magnetoresistivity anomaly. As a control experiment, none of these signals is observed in the pristine Cr$_2$Te$_3$ samples. Therefore, the Bi-nanosheets serve as seeds of topological Hall effect induced by non-coplanar magnetic textures planted into Cr$_2$Te$_3$. Our experiments demonstrate a new method to generates a large topological Hall effect by planting strong spin-orbit couplings into the traditional ferromagnet, which may have potential applications in spintronics.
The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed inside nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain important information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field solution, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on PLGA nanospheres. We also introduce a simple technique to access the importance of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. Our results help illustrate the important effect that the dipolar interaction has in most nanoparticle samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا