Do you want to publish a course? Click here

The rates and modes of gas accretion on to galaxies and their gaseous haloes

112   0   0.0 ( 0 )
 Added by Freeke van de Voort
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We study the rate at which gas accretes onto galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion onto haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. The specific rate of gas accretion onto haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo>>10^11 Msun it is relatively insensitive to feedback processes. In contrast, accretion rates onto galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo~10^12 Msun. Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or <~10^5 K. The fraction of gas accreted on to haloes in the hot mode is insensitive to feedback and metal-line cooling. It increases with decreasing redshift, but is mostly determined by halo mass, increasing gradually from less than 10% for ~10^11 Msun to greater than 90% at 10^13 Msun. In contrast, for accretion onto galaxies the cold mode is always significant and the relative contributions of the two accretion modes are more sensitive to feedback and metal-line cooling. The majority of stars present in any mass halo at any redshift were formed from gas accreted in the cold mode, although the hot mode contributes typically over 10% for Mhalo>~10^11 Msun. Galaxies, but not necessarily their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.



rate research

Read More

We apply our recently proposed quadratic genetic modification approach to generating and testing the effects of alternative mass accretion histories for a single $Lambda$CDM halo. The goal of the technique is to construct different formation histories, varying the overall contribution of mergers to the fixed final mass. This enables targeted studies of galaxy and dark matter halo formations sensitivity to the smoothness of mass accretion. Here, we focus on two dark matter haloes, each with four different mass accretion histories. We find that the concentration of both haloes systematically decreases as their merger history becomes smoother. This causal trend tracks the known correlation between formation time and concentration parameters in the overall halo population. At fixed formation time, we further establish that halo concentrations are sensitive to the order in which mergers happen. This ability to study an individual halos response to variations in its history is highly complementary to traditional methods based on emergent correlations from an extended halo population.
We present a search for outlying HII regions in the extended gaseous outskirts of nearby (D < 40 Mpc) galaxies, and subsequent multi-slit spectroscopy used to obtain the HII region nebular oxygen abundances. The galaxies in our sample have extended HI disks and/or interaction-related HI features that extend well beyond their primary stellar components. We report oxygen abundance gradients out to 2.5 times the optical radius for these galaxies which span a range of morphologies and masses. We analyze the underlying stellar and neutral HI gas distributions in the vicinity of the HII regions to understand the physical processes that give rise to the observed metal distributions in galaxies. These measurements, for the first time, convincingly show flat abundance distributions out to large radii in a wide variety of systems, and have broad implications for galaxy chemodynamical evolution.
We study shapes and alignments of 45 dark matter (DM) haloes and their brightest cluster galaxies (BCGs) using a sample of 39 massive clusters from Hubble Frontier Field (HFF), Cluster Lensing And Supernova survey with Hubble (CLASH), and Reionization Lensing Cluster Survey (RELICS). We measure shapes of the DM haloes by strong gravitational lensing, whereas BCG shapes are derived from their light profiles in Hubble Space Telescope images. Our measurements from a large sample of massive clusters presented here provide new constraints on dark matter and cluster astrophysics. We find that DM haloes are on average highly elongated with the mean ellipticity of $0.482pm 0.028$, and position angles of major axes of DM haloes and their BCGs tend to be aligned well with the mean value of alignment angles of $22.2pm 3.9$ deg. We find that DM haloes in our sample are on average more elongated than their BCGs with the mean difference of their ellipticities of $0.11pm 0.03$. In contrast, the Horizon-AGN cosmological hydrodynamical simulation predicts on average similar ellipticities between DM haloes and their central galaxies. While such a difference between the observations and the simulation may well be explained by the difference of their halo mass scales, other possibilities include the bias inherent to strong lensing measurements, limited knowledge of baryon physics, or a limitation of cold dark matter.
It is known observationally that the major axes of galaxy clusters and their brightest cluster galaxies are roughly aligned with each other. To understand the origin of the alignment, we identify 40 cluster-sized dark matter (DM) haloes with masses higher than $5times10^{13}~M_{odot}$ and their central galaxies (CGs) at $zapprox 0$ in the Horizon-AGN cosmological hydrodynamical simulation. We trace the progenitors at 50 different epochs between $0<z<5$. We then fit their shapes and orientations with a triaxial ellipsoid model. While the orientations of both DM haloes and CGs change significantly due to repeated mergers and mass accretions, their relative orientations are well aligned at each epoch even at high redshifts, $z>1$. The alignment becomes tighter with cosmic time; the major axes of the CGs and their host DM haloes at present are aligned on average within $sim 30^{circ}$ in the three dimensional space and $sim 20^{circ}$ in the projected plane. The orientations of the major axes of DM haloes on average follow one of the eigen-vectors of the surrounding tidal field that corresponds to the {it slowest collapsing} (or even stretching) mode, and the alignment with the tidal field also becomes tighter. This implies that the orientations of CGs and DM haloes at the present epoch are largely imprinted in the primordial density field of the Universe, whereas strong dynamical interactions such as mergers are important to explain their mutual alignment at each epoch.
143 - Aaron A. Dutton 2010
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا