Do you want to publish a course? Click here

Results from a Low-Energy Analysis of the CDMS II Germanium Data

127   0   0.0 ( 0 )
 Added by David Moore
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.



rate research

Read More

We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search (CDMS~II) experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from $^{210}$Pb decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. We confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.
We report limits on annual modulation of the low-energy event rate from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Such a modulation could be produced by interactions from Weakly Interacting Massive Particles (WIMPs) with masses ~10 GeV/c^2. We find no evidence for annual modulation in the event rate of veto-anticoincident single-detector interactions consistent with nuclear recoils, and constrain the magnitude of any modulation to <0.06 event [keVnr kg day]^-1 in the 5-11.9 keVnr energy range at the 99% confidence level. These results disfavor an explanation for the reported modulation in the 1.2-3.2 keVee energy range in CoGeNT in terms of nuclear recoils resulting from elastic scattering of WIMPs at >98% confidence. For events consistent with electron recoils, no significant modulation is observed for either single- or multiple-detector interactions in the 3.0-7.4 keVee range.
Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four ~224 g germanium and two ~105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three of the germanium and both silicon detectors were analyzed with a new low-threshold technique, making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger thresholds of ~1 keV and ~2 keV, respectively. Limits on the spin-independent cross section for weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data exclude interesting parameter space for WIMPs with masses below 9 GeV/c^2. Under standard halo assumptions, these data partially exclude parameter space favored by interpretations of the DAMA/LIBRA and CoGeNT experiments data as WIMP signals, and exclude new parameter space for WIMP masses between 3 GeV/c^2 and 4 GeV/c^2.
We report results of a search for Weakly Interacting Massive Particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS IIs full complement of detectors in 2006-2007; results from this exposure using the Ge detectors have already been presented. We observed no candidate WIMP-scattering events in an exposure of 55.9 kg-days before analysis cuts, with an expected background of ~1.1 events. The exposure of this analysis is equivalent to 10.3 kg-days over a recoil energy range of 7-100 keV for an ideal Si detector and a WIMP mass of 10 GeV/c2. These data set an upper limit of 1.7x10-41 cm2 on the WIMP-nucleon spin-independent cross section of a 10 GeV/c2 WIMP. These data exclude parameter space for spin-independent WIMP-nucleon elastic scattering that is relevant to recent searches for low-mass WIMPs.
CDMS II data from the 5-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector WIMP-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to $sim$5 keV, to increase sensitivity near a WIMP mass of 8 GeV/$c^2$. After unblinding, there were zero candidate events above a deposited energy of 10 keV and 6 events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of $1.8 times 10^{-44}$ and $1.18 times 10 ^{-41}$ cm$^2$ at 90% confidence for 60 and 8.6 GeV/$c^2$ WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/$c^2$ WIMPs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا