Do you want to publish a course? Click here

Polarised foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionisation

125   0   0.0 ( 0 )
 Added by Paul Geil Mr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionisation history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio obsevations. This leakage leads to a portion of the complex linear polarisation signal finding its way into Stokes I, and inhibits the detection of the non-polarised cosmological signal from the epoch of reionisation. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionisation in the presence of contamination by polarised foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarisation leakage, and redshifted 21-cm emission by neutral hydrogen from the epoch of reionisation. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarisation leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionisation in its late stages (z ~ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionised cavities in the intergalactic medium.



rate research

Read More

Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the negative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.
The low-frequency linearly-polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky Murchison Widefield Array (MWA) Survey -- the POlarised GLEAM Survey, or POGS -- we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range $-82^{circ}$ to $+30^{circ}$ at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169$-$231 MHz. We have performed two targeted searches: the first covering 25,489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination $+30^{circ}$, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly-polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range $-328.07$ rad m$^{-2}$ to $+279.62$ rad m$^{-2}$. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sources in Faraday space (Faraday screens). Here we consider how to apply RM Synthesis to reconstruct the Faraday dispersion function, aiming at the further extraction of information concerning the magnetic fields of extended sources, e.g. galaxies. The main attention is given to two related novelties in the method, i.e. the symmetry argument in Faraday space and the wavelet technique. We give a relation between our method and the previous applications of RM Synthesis to point-like sources. We demonstrate that the traditional RM Synthesis for a point-like source indirectly implies a symmetry argument and, in this sense, can be considered as a particular case of the method presented here. Investigating the applications of RM Synthesis to polarization details associated with small-scale magnetic fields, we isolate an option which was not covered by the ideas of the Burn theory, i.e. using quantities averaged over small-scale fluctuations of magnetic field and electron density. We describe the contribution of small-scale fields in terms of Faraday dispersion and beam depolarization. We consider the complex polarization for RM Synthesis without any averaging over small-scale fluctuations of magnetic field and electron density and demonstrate that it allows us to isolate the contribution from small-scale field.
Ultra-low frequency observations (<100 MHz) are particularly challenging because they are usually performed in a low signal-to-noise ratio regime due to the high sky temperature and because of ionospheric disturbances whose effects are inversely proportional to the observing frequency. Nonetheless, these observations are crucial to study the emission from low-energy populations of cosmic rays. We aim to obtain the first thermal-noise limited (~ 1.5 mJy/beam) deep continuum radio map using the LOFAR Low Band Antenna (LBA) system. Our demonstration observation targeted the galaxy cluster RX J0603.3+4214 (the Toothbrush cluster). We used the resulting ultra-low frequency (58 MHz) image to study cosmic-ray acceleration and evolution in the post shock region, as well as their relation with the presence of a radio halo. We describe the data reduction we have used to calibrate LOFAR LBA observations. The resulting image is combined with observations at higher frequencies (LOFAR 150 MHz and VLA 1500 MHz) to extract spectral information. We obtained the first thermal-noise limited image from an observation carried out with the LOFAR LBA system using all Dutch stations at a central frequency of 58 MHz. With 8 hours of data, we reached an rms noise of 1.3 mJy/beam at a resolution of 18 x 11. The procedure we have developed is an important step forward towards routine high-fidelity imaging with the LOFAR LBA. The analysis of the radio spectra shows that the radio relic extends to distances of 800 kpc downstream from the shock front, larger than what allowed by electron cooling time. Furthermore, the shock wave started accelerating electrons already at a projected distance of <300 kpc from the crossing point of the two clusters. These results can be explained if electrons are reaccelerated downstream by background turbulence possibly combined with projection effects.
We present the results of a pilot study search for Fast Radio Bursts (FRBs) using the Murchison Widefield Array (MWA) at low frequencies (139 - 170 MHz). We utilised MWA data obtained in a routine imaging mode from observations where the primary target was a field being studied for Epoch of Reionisation detection. We formed images with 2 second time resolution and 1.28~MHz frequency resolution for 10.5 hours of observations, over 400 square degrees of the sky. We de-dispersed the dynamic spectrum in each of 372,100 resolution elements of 2$times$2 arcmin$^{2}$, between dispersion measures of 170 and 675~pc~cm$^{-3}$. Based on the event rate calculations in Trott, Tingay & Wayth (2013), which assumes a standard candle luminosity of $8times10^{37}$ Js$^{-1}$, we predict that with this choice of observational parameters, the MWA should detect ($sim10$,$sim2$,$sim0$) FRBs with spectral indices corresponding to ($-$2, $-$1, 0), based on a 7$sigma$ detection threshold. We find no FRB candidates above this threshold from our search, placing an event rate limit of $<700$ above 700 Jy.ms per day per sky and providing evidence against spectral indices $alpha<-1.2$ ($Spropto u^{alpha}$). We compare our event rate and spectral index limits with others from the literature. We briefly discuss these limits in light of recent suggestions that supergiant pulses from young neutron stars could explain FRBs. We find that such supergiant pulses would have to have much flatter spectra between 150 and 1400 MHz than have been observed from Crab giant pulses to be consistent with the FRB spectral index limit we derive.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا