Do you want to publish a course? Click here

PT-symmetric quantum state discrimination

137   0   0.0 ( 0 )
 Added by Carl Bender
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Suppose that a system is known to be in one of two quantum states, $|psi_1 > $ or $|psi_2 >$. If these states are not orthogonal, then in conventional quantum mechanics it is impossible with one measurement to determine with certainty which state the system is in. However, because a non-Hermitian PT-symmetric Hamiltonian determines the inner product that is appropriate for the Hilbert space of physical states, it is always possible to choose this inner product so that the two states $|psi_1 > $ and $|psi_2 > $ are orthogonal. Thus, quantum state discrimination can, in principle, be achieved with a single measurement.



rate research

Read More

More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, $mathcal{PT}$. It was shown that if $mathcal{PT}$ is unbroken, energies were, in fact, positive, and unitarity was satisifed. Since quantum mechanics is quantum field theory in 1 dimension, time, it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of $mathcal{PT}$-invariant quantum electrodynamics was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the Kallen spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Greens functions are examined, since the latter have to possess physical requirements of analyticity. The status of $mathcal{PT}$QED will be reviewed in this report, as well as the general issue of unitarity.
181 - Jia-wen Deng , Uwe Guenther , 2012
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
We theoretically demonstrate soliton steering in $mathcal{PT}$-symmetric coupled nonlinear dimers. We show that if the length of the $mathcal{PT}$-symmetric system is set to $2pi$ contrary to the conventional one which operates satisfactorily well only at the half-beat coupling length, the $mathcal{PT}$ dimer remarkably yields an ideal soliton switch exhibiting almost 99.99% energy efficiency with an ultra-low critical power.
Recently, much research has been carried out on Hamiltonians that are not Hermitian but are symmetric under space-time reflection, that is, Hamiltonians that exhibit PT symmetry. Investigations of the Sturm-Liouville eigenvalue problem associated with such Hamiltonians have shown that in many cases the entire energy spectrum is real and positive and that the eigenfunctions form an orthogonal and complete basis. Furthermore, the quantum theories determined by such Hamiltonians have been shown to be consistent in the sense that the probabilities are positive and the dynamical trajectories are unitary. However, the geometrical structures that underlie quantum theories formulated in terms of such Hamiltonians have hitherto not been fully understood. This paper studies in detail the geometric properties of a Hilbert space endowed with a parity structure and analyses the characteristics of a PT-symmetric Hamiltonian and its eigenstates. A canonical relationship between a PT-symmetric operator and a Hermitian operator is established. It is shown that the quadratic form corresponding to the parity operator, in particular, gives rise to a natural partition of the Hilbert space into two halves corresponding to states having positive and negative PT norm. The indefiniteness of the norm can be circumvented by introducing a symmetry operator C that defines a positive definite inner product by means of a CPT conjugation operation.
291 - Elena R. Loubenets 2021
For the optimal success probability under minimum-error discrimination between $rgeq2$ arbitrary quantum states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and specify the relations between these new general bounds and the general bounds known in the literature. We also present the example where the new general analytical bounds, lower and upper, on the optimal success probability are tighter than most of the general analytical bounds known in the literature. The new upper bound on the optimal success probability explicitly generalizes to $r>2$ the form of the Helstrom bound. For $r=2$, each of our new bounds, lower and upper, reduces to the Helstrom bound.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا