Do you want to publish a course? Click here

Fe-K line probing of material around the AGN central engine with Suzaku

220   0   0.0 ( 0 )
 Added by Yasushi Fukazawa
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically analyzed the high-quality Suzaku data of 88 Seyfert galaxies. We obtained a clear relation between the absorption column density and the equivalent width of the 6.4 keV line above 10$^{23}$ cm$^{-2}$, suggesting a wide-ranging column density of $10^{23-24.5}$ cm$^{-2}$ with a similar solid and a Fe abundance of 0.7--1.3 solar for Seyfert 2 galaxies. The EW of the 6.4 keV line for Seyfert 1 galaxies are typically 40--120 eV, suggesting the existence of Compton-thick matter like the torus with a column density of $>10^{23}$ cm$^{-2}$ and a solid angle of $(0.15-0.4)*4pi$, and no difference of neutral matter is visible between Seyfert 1 and 2 galaxies. An absorber with a lower column density of $10^{21-23}$ cm$^{-2}$ for Compton-thin Seyfert 2 galaxies is suggested to be not a torus but an interstellar medium. These constraints can be understood by the fact that the 6.4 keV line intensity ratio against the 10--50 keV flux is almost identical within a range of 2--3 in many Seyfert galaxies. Interestingly, objects exist with a low EW, 10--30 eV, of the 6.4 keV line, suggesting that those torus subtends only a small solid angle of $<0.2*4pi$. Ionized Fe-K$alpha$ emission or absorption lines are detected from several percents of AGNs. Considering the ionization state and equivalent width, emitters and absorbers of ionized Fe-K lines can be explained by the same origin, and highly ionized matter is located at the broad line region. The rapid increase in EW of the ionized Fe-K emission lines at $N_{H}>10^{23}$ cm$^{-2}$ is found, like that of the cold material. It is found that these features seem to change for brighter objects with more than several $10^{44}$ erg/s such that the Fe-K line features become weak. We discuss this feature, together with the torus structure.



rate research

Read More

[abridged] We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC4258 using data from Suzaku, XMM-Newton, and the Swift/BAT survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent-Kalpha emission line of cold iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very clean and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence for line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between $3times 10^3r_g$ and $4times 10^4r_g$ from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence for large amplitude 2-10keV variability on timescales of 50ksec as well as smaller amplitude flares on timescales as short as 5-10ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk ($rapprox 10r_g$ or less).
We report the Suzaku/XIS results of the Galactic oxygen-rich supernova remnant (SNR), G292.0+1.8, a remnant of a core-collapse supernova. The X-ray spectrum of G292.0+1.8 consists of two type plasmas, one is in collisional ionization equilibrium (CIE) and the other is in non-equilibrium ionization (NEI). The CIE plasma has nearly solar abundances, and hence would be originated from the circumstellar and interstellar mediums. The NEI plasma has super-solar abundances, and the abundance pattern indicates that the plasma originates from the supernova ejecta with a main sequence of 30-35 Msolar. Iron K-shell line at energy of 6.6 keV is detected for the first time in the NEI plasma.
103 - T. Yaqoob 2001
We review what we have learnt with ASCA from studying the Fe-K lines in AGN and describe a program to deconvolve the narrow, non-disk components of the lines with Chandra. This is necessary to derive the correct profiles of the broad, relativistic lines obtained using data from XMM and other high-throughput instruments. Since reverberation techniques are now not looking promising, we present Constellation-X simulations showing an alternative way we might be able to measure black-hole mass and spin.
Supernova remnants (SNRs) have been regarded as major acceleration sites of Galactic cosmic rays. Recent X-ray studies revealed neutral Fe K$alpha$ line emission from dense gas in the vicinity of some SNRs, which can be best interpreted as K-shell ionization of Fe atoms in the gas by sub-relativistic particles accelerated in the SNRs. In this Letter, we propose a novel method of constraining the composition of particles accelerated in SNRs, which is currently unknown. When energetic heavy ions collide with target atoms, their strong Coulomb field can easily cause simultaneous ejection of multiple inner-shell electrons of the target. This results in shifts in characteristic X-ray line energies, forming distinctive spectral structures. Detection of such structures in the neutral Fe K$alpha$ line strongly supports the particle ionization scenario, and furthermore provides direct evidence of heavy ions in the accelerated particles. We construct a model for the Fe K$alpha$ line structures by various projectile ions utilizing atomic-collision data.
Aims: We study the emission of molecular gas in 3C236, a FR II radio source at z~0.1, and search for the footprints of AGN feedback. 3C236 shows signs of a reactivation of its AGN triggered by a recent minor merger episode. Observations have also previously identified an extreme HI outflow in this source. Methods: The IRAM PdBI has been used to study the distribution and kinematics of molecular gas in 3C236 by imaging with high spatial resolution the emission of the 12CO(2-1) line in the nucleus of the galaxy. We have searched for outflow signatures in the CO map. We have also derived the SFR in 3C236 using data available from the literature at UV, optical and IR wavelengths, to determine the star-formation efficiency of molecular gas. Results: The CO emission in 3C236 comes from a spatially resolved 2.6 kpc disk with a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of the CO data, we do not detect any outflow signatures in the cold molecular gas. The disk has a cold gas mass M(H2)~2.1x10^9 Msun. We determine a new value for the redshift of the source zCO=0.09927. The similarity between the CO and HI profiles indicates that the deep HI absorption in 3C236 can be accounted for by a rotating HI structure, restricting the evidence of HI outflow to the most extreme velocities. In the light of the new redshift, the analysis of the ionized gas kinematics reveals a 1000 km/s outflow. As for the CO emitting gas, outflow signatures are nevertheless absent in the warm molecular gas emission traced by infrared H2 lines. The star-formation efficiency in 3C236 is consistent with the value measured in normal galaxies, which follow the canonical KS-law. This result, confirmed to hold in other young radio sources examined in this work, is in stark contrast with the factor of 10-50 lower SFE that seems to characterize evolved powerful radio galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا