Do you want to publish a course? Click here

Radiative activity of magnetic white dwarf undergoing Lorentz-force-driven torsional vibrations

104   0   0.0 ( 0 )
 Added by Sergey Bastrukov
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study radiative activity of magnetic white dwarf undergoing torsional vibrations about axis of its own dipole magnetic moment under the action of Lorentz restoring force. It is shown that pulsating white dwarf can convert its vibration energy into the energy of magneto-dipole emission, oscillating with the frequency equal to the frequency of Alfven torsional vibrations, provided that internal magnetic field is decayed. The most conspicuous feature of the vibration energy powered radiation in question is the lengthening of periods of oscillating emission; the rate of period elongation is determined by the rate magnetic field decay.



rate research

Read More

During eruptive flares, vector magnetograms show increasing horizontal magnetic field and downward Lorentz force in the Suns photosphere around the polarity-inversion line. Such behavior has often been associated with the implosion conjecture and interpreted as the result of either momentum conservation while the eruption moves upward, or of the contraction of flare loops. We characterize the physical origin of these observed behaviors by analyzing a generic 3D MHD simulation of an eruptive flare. Even though the simulation was undesigned to recover the magnetic field and Lorentz force properties, it is fully consistent with them, and it provides key additional informations to understand them. The area where the magnetic field increases gradually develops between current ribbons, which spread away from each other and are connected to the coronal region. This area is merely the footprint of the coronal post-flare loops, whose contraction increases their shear field component and the magnetic energy density in line with the ideal induction equation. For simulated data, we computed the Lorentz force density map by applying the method used in observations. We obtained increase of the downward component of the Lorentz force density around the PIL -consistent with observations. However, this significantly differs from the Lorentz force density maps obtained directly from the 3D magnetic field and current. These results altogether question previous interpretations based on the implosion conjecture and momentum conservation with the CME, and rather imply that the observed increases in photospheric horizontal magnetic fields result from the reconnection-driven contraction of sheared flare-loops.
We present a new catalog of spectroscopically-confirmed white dwarf stars from the Sloan Digital Sky Survey Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent a more than factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalog based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log(g) if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50% the number of massive white dwarfs (M > 0.75 Msun) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.
The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method which consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 < M/Msun < 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا