Do you want to publish a course? Click here

Third Harmonic Generation at 223nm in the Metallic Regime of GaP

261   0   0.0 ( 0 )
 Added by Vito Roppo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate second and third harmonic generation from a GaP substrate 500{mu}m thick. The second harmonic field is tuned at the absorption resonance at 335nm, and the third harmonic signal is tuned at 223nm, in a range where the dielectric function is negative. These results show that a phase locking mechanism that triggers transparency at the harmonic wavelengths persists regardless of the dispersive properties of the medium, and that the fields propagate hundreds of microns without being absorbed even when the harmonics are tuned to portions of the spectrum that display metallic behavior.



rate research

Read More

We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk X(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic X(2) and X(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TEand TM-polarized harmonics can be generated efficiently; (iii) the X(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10-6 for second harmonic generation to 10-3 for the third harmonic signal, when pump power is 2GW/cm2.
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
High-harmonic generation is the cornerstone of nonlinear optics. It has been demonstrated in a wide range of crystalline systems including dielectrics, semiconductors, and semi-metals, as well as in gases, leaving metals out due to their low damage threshold. Here, we report on the high-harmonic generation in metallic titanium nitride (TiN) films. TiN is a refractory plasmonic metal, known for its high melting temperature and laser damage threshold, with optical properties similar to those of gold. We show that TiN can withstand laser pulses with peak intensities as high as 13 TW/cm$^2$, one order of magnitude higher than gold, enabling the emission of intraband harmonics up to photon energies of 11 eV. These harmonics can pave the way for compact and efficient plasmonic devices producing vacuum ultraviolet (VUV) frequency combs. Through numerical calculations and experimental studies, we show that the intensity scaling and angular anisotropy of the emitted VUV radiation stem from the anisotropic conduction band structure of TiN, thus confirming its intraband origin.
Second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed both in transmission and reflection. These harmonic components can propagate through an opaque material as long as the pump is tuned to a region of transparency or semi-transparency, and correspond to the inhomogeneous solutions of Maxwells equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including bulk nonlinearity, magnetic Lorentz and surface contributions. Experimental results are compared with a detailed numerical model that takes into account these different effects.
We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا