Do you want to publish a course? Click here

A quantum isomonodromy equation and its application to N=2 SU(N) gauge theories

149   0   0.0 ( 0 )
 Added by Yasuhiko Yamada
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give an explicit differential equation which is expected to determine the instanton partition function in the presence of the full surface operator in N=2 SU(N) gauge theory. The differential equation arises as a quantization of a certain Hamiltonian system of isomonodromy type discovered by Fuji, Suzuki and Tsuda.



rate research

Read More

Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although the string tension is generically of a square-root form, it turns out that all existing BPS (Bogomolnyi-Prasad-Sommerfield) solutions have a tension which is linear in the magnetic fluxes, which in turn are linearly related to the winding numbers. The main result is a series of theorems establishing three different kinds of solutions of the so-called constraint equations, which can be pictured as orthogonal directions to the magnetic flux in ${rm SU}(2)_R$ space. We further prove for all cases, that a seemingly vanishing Bogomolnyi bound cannot have solutions. Finally, we write down the most general vortex equations in both master form and Taubes-like form. Remarkably, the final vortex equations essentially look Abelian in the sense that there is no trace of the ${rm SU}(2)_R$ symmetry in the equations, after the constraint equations have been solved.
218 - M. Bill`o , M. Frau , F. Fucito 2016
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the prepotential in terms of (quasi)-modular forms, thus resumming the instanton contributions. These results can be checked against the microscopic multi-instanton calculus in the case of classical algebras, but are valid also for the exceptional E6, E7, E8, F4 and G2 algebras, where direct computations are not available.
67 - Viqar Husain 1999
We describe a class of diffeomorphism invariant SU(N) gauge theories in N^2 dimensions, together with some matter couplings. These theories have (N^2-3)(N^2-1) local degrees of freedom, and have the unusual feature that the constraint associated with time reparametrizations is identically satisfied. A related class of SU(N) theories in N^2-1 dimensions has the constraint algebra of general relativity, but has more degrees of freedom. Non-perturbative quantization of the first type of theory via SU(N) spin networks is briefly outlined.
187 - Masazumi Honda 2016
We study weak coupling perturbative series in 4d N=2 and 5d N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in zero instanton sector are Borel summable for various observables. Our result for 4d $mathcal{N}=2$ case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely Borel summable. We also prove that the perturbative series in arbitrary number of instanton sector are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations in each number of instanton sector.
Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8*|2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;lambda) in one dimension. We find that SU(2) deformations can be achieved using n pairs of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;lambda) commute with the generators of a dual superalgebra OSp(2n*|2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;lambda) deformed by a pair of bosons. This can be understood as a particular case of a general mapping between the spectra of quantum mechanical quaternionic Kahler sigma models with eight super symmetries and minreps of their isometry groups that descends from the precise mapping established between the 4d, N=2 sigma models coupled to supergravity and minreps of their isometry groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا