No Arabic abstract
Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes. However, at the shortest timescales lattice and charge order may become de-coupled, highlighting the electronic nature of this many-body broken symmetry ground state. Using time and angle resolved photoemission spectroscopy with sub-30-fs XUV pulses, we have mapped the time- and momentum-dependent electronic structure in photo-stimulated 1T-TaS2, a prototypical two-dimensional charge density wave compound. We find that CDW order, observed as a splitting of the uppermost electronic bands at the Brillouin zone boundary, melts well before relaxation of the underlying structural distortion. Decoupled charge and lattice modulations challenge the view of Fermi Surface nesting as a driving force for charge density wave formation in 1T-TaS2.
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasi-equilibrium state with domain-like short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic site selectivity.
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling strength. In our work, we focus on the real-time evolution starting from two different types of initial states that are CDW ordered: (i) ideal CDW states with and without additional phonons in the system and (ii) correlated ground states in the CDW phase. We identify the mechanism for CDW melting in the ensuing real-time dynamics and show that it strongly depends on the type of initial state. We focus on the far-from-equilibrium regime and emphasize the role of electron-phonon coupling rather than dominant electronic correlations, thus complementing a previous study of photo-induced CDW melting [H. Hashimoto and S. Ishihara, Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means of matrix-product-state based methods with a local basis optimization (LBO). Within these techniques, one rotates the local (bosonic) Hilbert spaces adaptively into an optimized basis that can then be truncated while still maintaining a high precision. In this work, we extend the time-evolving block decimation (TEBD) algorithm with LBO, previously applied to single-polaron dynamics, to a half-filled system. We demonstrate that in some parameter regimes, a conventional TEBD method without LBO would fail. Furthermore, we introduce and use a ground-state density-matrix renormalization group method for electron-phonon systems using local basis optimization. In our examples, we account for up to $M_{rm ph} = 40$ bare phonons per site by working with $O(10)$ optimal phonon modes.
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical CDW phase transition, temperature dependent physical properties of single crystals reveal a first-order phase transition. This is accompanied by a discontinuous change in the size of the crystal lattice. In fact, this large strain has catastrophic consequences for the crystals causing them to physically shatter. Single crystal x-ray diffraction reveals super-lattice peaks in the low-temperature phase signaling the development of a CDW lattice modulation. No similar low-temperature transitions are observed in BaCo$_2$Al$_9$. Electronic structure calculations provide one hint to the different behavior of these two compounds; the d-orbital states in the Fe compound are not completely filled. Iron compounds are renowned for their magnetism and partly filled d-states play a key role. It is therefore surprising that BaFe$_2$Al$_9$ develops a structural modulation instead at low temperature instead of magnetic order.