Do you want to publish a course? Click here

Geometric, Variational Discretization of Continuum Theories

201   0   0.0 ( 0 )
 Added by Mathieu Desbrun
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincar{e} systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes.



rate research

Read More

We study cohomological obstructions to the existence of global conserved quantities. In particular, we show that, if a given local variational problem is supposed to admit global solutions, certain cohomology classes cannot appear as obstructions. Vice versa, we obtain a new type of cohomological obstruction to the existence of global solutions for a variational problem.
A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagins equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagins algorithm in hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results, with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular $S$ matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights, labelling the orbit functions, obey symmetries of the dual extended affine Weyl groups. Fundamental domains of the dual extended affine Weyl groups are detailed in full generality. Identical cardinality of the point and weight sets is proved and explicit counting formulas for these cardinalities are derived. Discrete orthogonality of complex-valued Weyl and real-valued Hartley orbit functions over the point sets is established and the corresponding discrete Fourier-Weyl and Hartley-Weyl transforms are formulated.
297 - Jiri Hrivnak , Jiri Patera 2009
Three types of numerical data are provided for simple Lie groups of any type and rank. This data is indispensable for Fourier-like expansions of multidimensional digital data into finite series of $C-$ or $S-$functions on the fundamental domain $F$ of the underlying Lie group $G$. Firstly, we consider the number $|F_M|$ of points in $F$ from the lattice $P^{vee}_M$, which is the refinement of the dual weight lattice $P^{vee}$ of $G$ by a positive integer $M$. Secondly, we find the lowest set $Lambda_M$ of dominant weights, specifying the maximal set of $C-$ and $S-$functions that are pairwise orthogonal on the point set $F_M$. Finally, we describe an efficient algorithm for finding, on the maximal torus of $G$, the number of conjugate points to every point of $F_M$. Discrete $C-$ and $S-$transforms, together with their continuous interpolations, are presented in full generality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا