Do you want to publish a course? Click here

Valley-Orbit Photocurrents in (111)-oriented Si-MOSFETs

101   0   0.0 ( 0 )
 Added by Sergey Ganichev
 Publication date 2010
  fields Physics
and research's language is English
 Authors J. Karch




Ask ChatGPT about the research

We demonstrate the injection of pure valley-orbit currents in multi-valley semiconductors and present the theory of this effect. We studied photo-induced transport in $n$-doped (111)-oriented silicon metal-oxide-semiconductor field effect transistors at room temperature. By shining circularly polarized light on exact oriented structures with six equivalent valleys, non-zero electron fluxes within each valley are generated, which compensate each other and do not yield a net electric current. By disturbing the balance between the valley fluxes, in this work by applying linearly polarized radiation as well as by introducing a nonequivalence of the valleys by disorientation, we approve that the pure valley currents can be converted into a measurable electric current.



rate research

Read More

The valley-orbit coupling in a few-electron Si quantum dot is expected to be a function of its occupation number N. We study the spectrum of multivalley Si quantum dots for 2 <= N <= 4, showing that, counterintuitively, electron-electron interaction effects on the valley-orbit coupling are negligible. For N=2 they are suppressed by valley interference, for N=3 they vanish due to spinor overlaps, and for N = 4 they cancel between different pairs of electrons. To corroborate our theoretical findings, we examine the experimental energy spectrum of a few-electron metal-oxide-semiconductor quantum dot. The measured spin-valley state filling sequence in a magnetic field reveals that the valley-orbit coupling is definitively unaffected by the occupation number.
We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation at normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors.
(111) Silicon quantum wells have been studied extensively, yet no convincing explanation exists for the experimentally observed breaking of 6 fold valley degeneracy into 2 and 4 fold degeneracies. Here, systematic sp3d5s* tight-binding and effective mass calculations are presented to show that a typical miscut modulates the energy levels which leads to breaking of 6 fold valley degeneracy into 2 lower and 4 raised valleys. An effective mass based valley-projection model is used to determine the directions of valley-minima in tight-binding calculations of large supercells. Tight-binding calculations are in better agreement with experiments compared to effective mass calculations.
Semiconducting nanowire (NW) devices have garnered attention in self-powered electronic and optoelectronic applications. This work explores and exhibits, for the first time for visible light, a clear evidence of the zero-biased optoelectronic switching in randomly dispersed Ge and Si NW networks. The test bench, on which the NWs were dispersed for optoelectronic characterization, was fabricated using standard CMOS fabrication process, and utilized metal contacts with dissimilar work functions - Al and Ni. The randomly dispersed NWs respond to light by exhibiting substantial photocurrents and, most remarkably, demonstrate zero-bias photo-switching. The magnitude of the photocurrent is dependent on the NW material, as well as the channel length. The photocurrent in randomly dispersed GeNWs was found to be higher by orders of magnitude compared to SiNWs. In both of these material systems, when the length of the NWs was comparable to the channel length, the currents in sparse NW networks were found to be higher than that in dense NW networks, which can be explained by considering various possible arrangements of NWs in these devices.
56 - Eric Jeckelmann 2015
Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping. Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا