Do you want to publish a course? Click here

A precise asteroseismic age and radius for the evolved Sun-like star KIC 11026764

255   0   0.0 ( 0 )
 Added by Travis S. Metcalfe
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. (2010) published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.



rate research

Read More

The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the Sun. We aimed mainly at extracting estimates of p-mode frequencies - as well as of other individual mode parameters - from the power spectra of the light curves of both stars, thus providing scope for a full seismic characterization. The light curves were corrected for instrumental effects in a manner independent of the Kepler Science Pipeline. Estimation of individual mode parameters was based both on the maximization of the likelihood of a model describing the power spectrum and on a classic prewhitening method. Finally, we employed a procedure for selecting frequency lists to be used in stellar modeling. A total of 30 and 21 modes of degree l=0,1,2 - spanning at least eight radial orders - have been identified for KIC 10273246 and KIC 10920273, respectively. Two avoided crossings (l=1 ridge) have been identified for KIC 10273246, whereas one avoided crossing plus another likely one have been identified for KIC 10920273. Good agreement is found between observed and predicted mode amplitudes for the F-type star KIC 10273246, based on a revised scaling relation. Estimates are given of the rotational periods, the parameters describing stellar granulation and the global asteroseismic parameters $Delta u$ and $ u_{rm{max}}$.
HD,139614 is known to be a $sim$14-Myr-old, possibly pre-main-sequence star in the Sco-Cen OB association in the Upper Centaurus-Lupus subgroup, with a slightly warped circumstellar disc containing ring structures hinting at one or more planets. The stars chemical abundance pattern is metal-deficient except for volatile elements, which places it in the $lambda$ Boo class and suggests it has recently accreted gas-rich but dust-poor material. We identify seven dipole and four radial pulsation modes among its $delta$ Sct pulsations using the TESS light curve and an echelle diagram. Precision modelling with the MESA stellar evolution and GYRE stellar oscillation programs confirms it is on the pre-main sequence. Asteroseismic, grid-based modelling suggests an age of $10.75pm0.77$ Myr, a mass of $1.52pm0.02$ M$_{odot}$, and a global metal abundance of $Z=0.0100pm0.0010$. This represents the first asteroseismic determination of the bulk metallicity of a $lambda$ Boo star. The precise age and metallicity offer a benchmark for age estimates in Upper Centaurus--Lupus, and for understanding disc retention and planet formation around intermediate-mass stars.
We present detailed characterization of the extremely dusty main sequence star TYC 8830 410 1. This system hosts inner planetary system dust (Tdust~300 K) with a fractional infrared luminosity of ~1%. Mid-infrared spectroscopy reveals a strong, mildy-crystalline solid-state emission feature. TYC 8830 410 1 (spectral type G9V) has a 49.5 separation M4-type companion co-moving and co-distant with it, and we estimate a system age of ~600 Myr. TYC 8830 410 1 also experiences dipper-like dimming events as detected by ASAS-SN, TESS, and characterized in more detail with the LCOGT. These recurring eclipses suggest at least one roughly star-sized cloud of dust orbits the star in addition to assorted smaller dust structures. The extreme properties of the material orbiting TYC 8830 410 1 point to dramatic dust-production mechanisms that likely included something similar to the giant-impact event thought to have formed the Earth-Moon system, although hundreds of millions of years after such processes are thought to have concluded in the solar system. TYC 8830 410 1 holds promise to deliver significant advances in our understanding of the origin, structure, and evolution of extremely dusty inner planetary systems.
The study of planet occurrence as a function of stellar mass is important for a better understanding of planet formation. Estimating stellar mass, especially in the red giant regime, is difficult. In particular, stellar masses of a sample of evolved planet-hosting stars based on spectroscopy and grid-based modelling have been put to question over the past decade with claims they were overestimated. Although efforts have been made in the past to reconcile this dispute using asteroseismology, results were inconclusive. In an attempt to resolve this controversy, we study four more evolved planet-hosting stars in this paper using asteroseismology, and we revisit previous results to make an informed study of the whole ensemble in a self-consistent way. For the four new stars, we measure their masses by locating their characteristic oscillation frequency, $mathrm{ u}_{mathrm{max}}$, from their radial velocity time series observed by SONG. For two stars, we are also able to measure the large frequency separation, $mathrm{Delta u}$, helped by extended SONG single-site and dual-site observations and new TESS observations. We establish the robustness of the $mathrm{ u}_{mathrm{max}}$-only-based results by determining the stellar mass from $mathrm{Delta u}$, and from both $mathrm{Delta u}$ and $mathrm{ u}_{mathrm{max}}$. We then compare the seismic masses of the full ensemble of 16 stars with the spectroscopic masses from three different literature sources. We find an offset between the seismic and spectroscopic mass scales that is mass-dependent, suggesting that the previously claimed overestimation of spectroscopic masses only affects stars more massive than about 1.6 M$_mathrm{odot}$.
We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, aimed at determining their activity level, spot distribution, and differential rotation. Both stars were discovered by us to be young stars and were observed by the NASA Kepler mission. The stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy which allowed us also to study the chromospheric activity from the emission in the core of Halpha and CaII IRT lines. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation are performed in a Bayesian manner, using a Markov chain Monte Carlo method. Both stars came out to be Sun-like with an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by the high level of chromospheric activity, comparable to that displayed by the early G-type stars in the Pleiades cluster. The flux ratio of the CaII-IRT lines suggests that the cores of these lines are mainly formed in optically-thick regions analogous to solar plages. The model of the light curves requires at least seven enduring spots for KIC 7985370 and nine spots for KIC 7765135 for a satisfactory fit. The assumption of longevity of the star spots, whose area is allowed to evolve in time, is at the heart of our approach. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dOmega~0.18 rad/day) which is in contrast with the predictions of some mean-field models of differential rotation for fast-rotating stars. Our results are instead in agreement with previous works on solar-type stars and with other models which predict a higher latitudinal shear, increasing with equatorial angular velocity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا