Do you want to publish a course? Click here

Correlated Optical/X-ray Long-term Variability in LMXB 4U1636-536

133   0   0.0 ( 0 )
 Added by I Chun Shih
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have conducted a 3-month program of simultaneous optical, soft and hard X-ray monitoring of the LMXB 4U1636-536/V801 Ara using the SMARTS 1.3m telescope and archival RXTE/ASM and Swift/XRT data. 4U1636-536 has been exhibiting a large amplitude, quasi-periodic variability since 2002 when its X-ray flux dramatically declined by roughly an order of magnitude. We confirmed that the anti-correlation between soft (2-12 keV) and hard (> 20 keV) X-rays, first investigated by Shih et al. (2005), is not an isolated event but a fundamental characteristic of this sources variability properties. However, the variability itself is neither strictly stable nor changing on an even longer characteristic timescale. We also demonstrate that the optical counterpart varies on the same timescale, and is correlated with the soft, and not the hard, X-rays. This clearly shows that X-ray reprocessing in LMXB discs is mainly driven by soft X-rays. The X-ray spectra in different epochs of the variability revealed a change of spectral characteristics which resemble the state change of black hole X-ray binaries. All the evidence suggests that 4U1636-536 is frequently (~monthly) undergoing X-ray state transitions, a characteristic feature of X-ray novae with their wide range of luminosities associated with outburst events. In its current behavioural mode, this makes 4U1636-536 an ideal target for investigating the details of state changes in luminous X-ray binaries.



rate research

Read More

74 - P. Reig , A. Nersesian , A. Zezas 2016
We present the results of our monitoring program to study the long-term variability of the Halpha line in high-mass X-ray binaries. We have carried out the most complete optical spectroscopic study of the global properties of high-mass X-ray binaries so far with the analysis of more than 1100 spectra of 20 sources. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods, ii) we show that a Keplerian distribution of the gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars, iii) a decrease in the Halpha equivalent width is generally observed after major X-ray outbursts, iv) we confirm that the Halpha equivalent width correlates with disk radius, v) while systems with supergiant companions display, multi-structured profiles, most of the Be/X-ray binaries show at some epoch double-peak asymmetric profiles, indicating that density inhomogeneities is a common property in the disk of Be/X-ray binaries, vi) the profile variability (V/R ratio) timescales are shorter and the Halpha equivalent width are smaller in Be/X-ray binaries than in isolated Be stars, and vii) we provide new evidence that the disk in Be/X-ray binaries is on average denser than in classical Be stars.
We report results obtained from the study of 12 thermonuclear X-ray bursts in 6 AstroSat observations of a neutron star X-ray binary and well-known X-ray burster, 4U 1636$-$536. Burst oscillations at $sim$581 Hz are observed with 4$-$5$sigma$ confidence in three of these X-ray bursts. The rising phase burst oscillations show a decreasing trend of the fractional rms amplitude at 3$sigma$ confidence,by far the strongest evidence of thermonuclear flame spreading observed with AstroSat. During the initial 0.25 second of the rise a very high value (34.0$pm$6.7%) is observed. The concave shape of the fractional amplitude profile provides a strong evidence of latitude-dependent flame speeds, possibly due to the effects of the Coriolis force. We observe decay phase oscillations with amplitudes comparable to that observed during the rising phase, plausibly due to the combined effect of both surface modes as well as the cooling wake. The Doppler shifts due to the rapid rotation of the neutron star might cause hard pulses to precede the soft pulses, resulting in a soft lag. The distance to the source estimated using the PRE bursts is consistent with the known value of $sim$6 kpc.
We investigate the long-term variability exhibited by the X-ray point sources in the starburst galaxy M82. By combining 9 Chandra observations taken between 1999 and 2007, we detect 58 X-ray point sources within the D25 isophote of M82 down to a luminosity of ~ 10^37 ergs/s. Of these 58 sources, we identify 3 supernova remnant candidates and one supersoft source. Twenty-six sources in M82 exhibit long-term (i.e., days to years) flux variability and 3 show long-term spectral variability. Furthermore, we classify 26 sources as variables and 10 as persistent sources. Among the total 26 variables, 17 varied by a flux ratio of > 3 and 6 are transient candidates. By comparing with other nearby galaxies, M82 shows extremely strong long-term X-ray variability that 47% of the X-ray sources are variables with a flux ratio of > 3. The strong X-ray variability of M82 suggests that the population is dominated by X-ray binaries.
134 - P. Reig 2014
We present photometric observations of the field around the optical counterparts of high-mass X-ray binaries. Our aim is to study the long-term photometric variability in correlation with their X-ray activity and derive a set of secondary standard stars that can be used for time series analysis. We find that the donors in Be/X-ray binaries exhibit larger amplitude changes in the magnitudes and colours than those hosting a supergiant companion. The amplitude of variability increases with wavelength in Be/X-ray binaries and remains fairly constant in supergiant systems. When time scales of years are considered, a good correlation between the X-ray and optical variability is observed. The X-rays cease when optical brightness decreases. These results reflect the fact that the circumstellar disk in Be/X-ray binaries is the main source of both optical and X-ray variability. We also derive the colour excess, E(B-V), selecting data at times when the contribution of the circumstellar disk was supposed to be at minimum, and we revisit the distance estimates.
647 - Gopal Bhatta 2021
Optical observations of a sample of 12 $gamma$-ray bright blazars from four optical data archives, AAVSO, SMARTS, Catalina, and Steward Observatory, are compiled to create densely sampled light curves spanning more than a decade. As a part of the bla zar multi-wavelength studies, several methods of analyses, e. g., flux distribution and RMS-flux relation, are performed on the observations with an aim to compare the results with the similar ones in the gama-ray band presented in Bhatta & Dhital 2020. It is found that, similar to $gamma$-ray band, blazars display significant variability in the optical band that can be characterized with log-normal flux distribution and a power-law dependence of RMS on flux. It could be an indication of possible inherent linear RMS-flux relation, yet the scatter in the data does not allow to rule out other possibilities. When comparing variability properties in the two bands, the blazars in the gama-rays are found to exhibit stronger variability with steeper possible linear RMS-flux relation and the flux distribution that is more skewed towards higher fluxes. The cross-correlation study shows that except for the source 3C 273, the overall optical and the $gamma$-ray emission in the sources are highly correlated, suggesting a co-spatial existence of the particles responsible for both the optical and $gamma$-ray emission. Moreover, the sources S5 0716+714, Mrk 421, Mrk 501, PKS 1424-418 and PKS 2155-304 revealed possible evidence for quasi-periodic oscillations in the optical emission with the characteristic timescales, which are comparable to those in the $gamma$-ray band detected in our previous work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا