Do you want to publish a course? Click here

Kepler Observations of Three Pre-Launch Exoplanet Candidates: Discovery of Two Eclipsing Binaries and a New Exoplanet

169   0   0.0 ( 0 )
 Added by David Ciardi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASAs {it Kepler} mission. {it Kepler} observations of them were obtained during Quarter 1 of the {it Kepler} mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the {it Kepler} mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the {it Kepler} light curves and pixel data, as well as medium resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19-day elliptical orbit. The third candidate (BOKS-1) is a $r$=15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R$_{Jupiter}$ in a 3.9 day orbit.



rate research

Read More

The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrance rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1-Q17 data vetting process. This work was undertaken as part of the Kepler Habitable Zone Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also include false positive probabilities recently calculated by Morton et al. (2016) for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems.
In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the ${it Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d $pm$ 3 s and a high eccentricity of 0.772 $pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $pm$ 0.05 Msun and 0.70 $ pm $ 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the ${it Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 $ pm $ 0.35 Mjup, and a radius of 0.94 $ pm $ 0.12 Rjup, and thus a bulk density of 2.1 $ pm $ 1.2 g.cm$^{-3}$. The planet has an equilibrium temperature of 511 $pm$ 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
The prime Kepler mission detected 34,032 transit-like signals, out of which 8,054 were identified as likely due to astrophysical planet transits or eclipsing binaries. We manually examined 306 of the remaining 25,978 detections, and found six plausible transiting or eclipsing objects, five of which are plausible planet candidates (PCs), and one stellar companion. One of our new PCs is a possible new second planet in the KOI 4302 system. Another new PC is a possible new planet around the KOI 4246, and when combined with a different possible planet rescued by the False Positive Working Group, we find that KOI 4246 may be a previously unrecognized three-planet system. end{abstract}
We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planets existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.
76 - M. Narang 2018
Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 $Kepler$ candidates from the latest $Kepler$ data release DR25 (Q1-Q17) with revised planetary radii based on $Gaia$~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses $> 4.0, M_mathrm{J}$: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا