Do you want to publish a course? Click here

Polariton Enhanced IR Reflection Spectra of Epitaxial Graphene on SiC

110   0   0.0 ( 0 )
 Added by Biplob Daas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show ~10x polariton-enhanced infrared reflectivity of epitaxial graphene on 4H-SiC, in SiCs restrahlen band (8-10um). By fitting measurements to theory, we extract the thickness, N, in monolayers (ML), momentum scattering time, Fermi level position of graphene and estimate carrier mobility. By showing that 1/root(ns), the carrier concentration/ML, we argue that scattering is dominated by short-range interactions at the SiC/graphene interface. Polariton formation finds application in near-field optical devices such as superlenses.



rate research

Read More

Establishing good electrical contacts to nanoscale devices is a major issue for modern technology and contacting 2D materials is no exception to the rule. One-dimensional edge-contacts to graphene were recently shown to outperform surface contacts but the method remains difficult to scale up. We report a resist-free and scalable method to fabricate few graphene layers with electrical contacts in a single growth step. This method derives from the discovery reported here of the growth of few graphene layers on a metallic carbide by thermal annealing of a carbide forming metallic film on SiC in high vacuum. We exploit the combined effect of edge-contact and partially-covalent surface epitaxy between graphene and the metallic carbide to fabricate devices in which low contact-resistance and Josephson effect are observed. Implementing this approach could significantly simplify the realization of large-scale graphene circuits.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical properties of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.
This paper describes the behavior of top gated transistors fabricated using carbon, particularly epitaxial graphene on SiC, as the active material. In the past decade research has identified carbon-based electronics as a possible alternative to silicon-based electronics. This enthusiasm was spurred by high carbon nanotube carrier mobilities. However, nanotube production, placement, and control are all serious issues. Graphene, a thin sheet of graphitic carbon, can overcome some of these problems and therefore is a promising new electronic material. Although graphene devices have been built before, in this work we provide the first demonstration and systematic evaluation of arrays of a large number of transistors entirely produced using standard microelectronics methods. Graphene devices presented feature high-k dielectric, mobilities up to 5000 cm2/Vs and, Ion/Ioff ratios of up to 7, and are methodically analyzed to provide insight into the substrate properties. Typical of graphene, these micron-scale devices have negligible band gaps and therefore large leakage currents.
Monolayer epitaxial graphene (EG) grown on hexagonal Si-terminated SiC substrates is intrinsically electron-doped (carrier density is about 10^13 cm^(-2)). We demonstrate a clean device fabrication process using a precious-metal protective layer, and show that etching with aqua regia results in p-type (hole) molecular doping of our un-gated, contamination-free EG. Devices fabricated by this simple process can reach a carrier density in the range of 10^10 cm^(-2) to 10^11 cm^(-2) with mobility about 8000 cm^2/V/s or higher. In a moderately doped device with a carrier density n = 2.4 x 10^11 cm^(-2) and mobility = 5200 cm^2/V/s, we observe highly developed quantized Hall resistance plateaus with filing factor of 2 at magnetic field strengths of less than 4 T. Doping concentrations can be restored to higher levels by heat treatment in Ar, while devices with both p-type and n-type majority carriers tend to drift toward lower carrier concentrations in ambient air.
173 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا