The Supernova Impostor Impostor SN 1961V: Spitzer Shows That Zwicky Was Right (Again)


Abstract in English

SN 1961V, one of Zwickys defining Type V supernovae (SN), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable (LBV) star. The former case is suggested by its association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L_opt ~ 10^5 Lsun, than the L_opt ~ 3 10^6 Lsun progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as a L_IR ~ 3 10^6 Lsun mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L_IR ~ 10^5 Lsun and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass and velocity scales are those of a SN or greater. We conclude that SN 1961V was a peculiar, but real, supernova. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass loss episodes shortly before core collapse. The progenitor is a low metallicity, ~1/3 solar, high mass, M_ZAMS > 80 Msun, star, which means either that BH formation can be accompanied by an SN or that surprisingly high mass stars can form a NS.

Download