Do you want to publish a course? Click here

Azimuthons in weakly nonlinear waveguides of different symmetries

147   0   0.0 ( 0 )
 Added by Yiqi Zhang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that weakly guiding nonlinear waveguides support stable propagation of rotating spatial solitons (azimuthons). We investigate the role of waveguide symmetry on the soliton rotation. We find that azimuthons in circular waveguides always rotate rigidly during propagation and the analytically predicted rotation frequency is in excellent agreement with numerical simulations. On the other hand, azimuthons in square waveguides may experience spatial deformation during propagation. Moreover, we show that there is a critical value for the modulation depth of azimuthons above which solitons just wobble back and forth, and below which they rotate continuously. We explain these dynamics using the concept of energy difference between different orientations of the azimuthon.



rate research

Read More

We study the formation of azimuthons, i.e., rotating spatial solitons, in media with nonlocal focusing nonlinearity. We show that whole families of these solutions can be found by considering internal modes of classical non-rotating stationary solutions, namely vortex solitons. This offers an exhaustive method to identify azimuthons in a given nonlocal medium. We demonstrate formation of azimuthons of different vorticities and explain their properties by considering the strongly nonlocal limit of accessible solitons.
We study ``nanoptera, which are non-localized solitary waves with exponentially small but non-decaying oscillations, in two singularly-perturbed Hertzian chains with precompression. These two systems are woodpile chains (which we model as systems of Hertzian particles and springs) and diatomic Hertzian chains with alternating masses. We demonstrate that nanoptera arise from Stokes phenomena and appear as special curves, called Stokes curves, are crossed in the complex plane. We use techniques from exponential asymptotics to obtain approximations of the oscillation amplitudes. Our analysis demonstrates that traveling waves in a singularly perturbed woodpile chain have a single Stokes curve, across which oscillations appear. Comparing these asymptotic predictions with numerical simulations reveals that this accurately describes the non-decaying oscillatory behavior in a woodpile chain. We perform a similar analysis of a diatomic Hertzian chain, that the nanpteron solution has two distinct exponentially small oscillatory contributions. We demonstrate that there exists a set of mass ratios for which these two contributions cancel to produce localized solitary waves. This result builds on prior experimental and numerical observations that there exist mass ratios that support localized solitary waves in diatomic Hertzian chains without precompression. Comparing asymptotic and numerical results in a diatomic Hertzian chain with precompression reveals that our exponential asymptotic approach accurately predicts the oscillation amplitude for a wide range of system parameters, but it fails to identify several values of the mass ratio that correspond to localized solitary-wave solutions.
We theoretically demonstrate the possibility to observe the macroscopic Zeno effect for nonlinear waveguides with a localized dissipation. We show the existence of stable stationary flows, which are balanced by the losses in the dissipative domain. The macroscopic Zeno effect manifests itself in the non-monotonic dependence of the stationary flow on the strength of the dissipation. In particular, we highlight the importance of the parameters of the dissipation to observe the phenomenon. Our results are applicable to a large variety of systems, including condensates of atoms or quasi-particles and optical waveguides.
We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced finite correlation length of the noise in the transverse plane, by means of both numerical simulations and analytical estimates. In fact, solitons are practically insensitive to noise when the correlation length of the noise becomes comparable to the extent of the wave packet. We characterize soliton stability using two different criteria based on the evolution of the Hamiltonian of the soliton and its power. The first criterion allows us to estimate a time (or distance) over which the soliton preserves its form. The second criterion gives the life-time of the solitary wave packet in terms of its radiative power losses. We derive a simplified mean field approach which allows us to calculate the power loss analytically in the physically relevant case of weakly correlated noise, which in turn serves as a lower estimate of the life-time for correlated noise in general case.
We present the study of the dark soliton dynamics in an inhomogenous fiber by means of a variable coefficient modified nonlinear Schr{o}dinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا