Do you want to publish a course? Click here

Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables

320   0   0.0 ( 0 )
 Added by Alexis Diaz-Torres
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulae of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the $^{16}$O projectile on the $^{154}$Sm target.



rate research

Read More

112 - Alexis Diaz-Torres 2010
Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision $^{12}$C + $^{12}$C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.
105 - Alexis Diaz-Torres 2010
Time-dependent density-matrix propagation is used to demonstrate, in a schematic model of an open quantum system, that the complex potential approach and the Lindblad dissipative dynamics are emph{not} equivalent. While the former preserves coherence, it is destroyed in the Lindblad dissipative dynamics. Quantum decoherence is the key aspect that makes the difference between the two approaches, indicating that the complex potential model is inadequate for a consistent description of open quantum-system dynamics. It is suggested that quantum decoherence should always be explicitly included when modelling low-energy nuclear collision dynamics within a truncated model space of reaction channels.
Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-channels (CC) method are standard approaches to investigate this aspect of fusion dynamics. However, both approaches present limitations, such as a lack of tunnelling of the many-body wave function in the former and a need for external parameters to describe the nucleus-nucleus potential and the couplings in the latter. Method: A method combining both approaches is proposed to overcome these limitations. CC calculations are performed using two types of inputs from Hartree-Fock (HF) theory: the nucleus-nucleus potential calculated with the frozen HF method, and the properties of low-lying vibrational states and giant resonances computed from the TDHF linear response. Results: The effect of the couplings to vibrational modes is studied in the $^{40}$Ca$+^{40}$Ca and $^{56}$Ni$+^{56}$Ni systems. This work demonstrates that the main effect of these couplings is a lowering of the barrier, in good agreement with the fusion thresholds predicted by TDHF calculations. Conclusions: As the only phenomenological inputs are the choice of the internal states of the nuclei and the parameters of the energy density functional used in the HF and TDHF calculations, the method presented in this work has a broad range of possible applications, including studies of alternative couplings or reactions involving exotic nuclei.
Using a random-matrix approach and Monte-Carlo simulations, we generate scattering matrices and cross sections for compound-nucleus reactions. In the absence of direct reactions we compare the average cross sections with the analytic solution given by the Gaussian Orthogonal Ensemble (GOE) triple integral, and with predictions of statistical approaches such as the ones due to Moldauer, to Hofmann, Richert, Tepel, and Weidenm{u}ller, and to Kawai, Kerman, and McVoy. We find perfect agreement with the GOE triple integral and display the limits of validity of the latter approaches. We establish a criterion for the width of the energy-averaging interval such that the relative difference between the ensemble-averaged and the energy-averaged scattering matrices lies below a given bound. Direct reactions are simulated in terms of an energy-independent background matrix. In that case, cross sections averaged over the ensemble of Monte-Carlo simulations fully agree with results from the Engelbrecht-Weidenm{u}ller transformation. The limits of other approximate approaches are displayed.
We first predict the ground-state properties of Ca isotopes, using the Gogny-D1S Hartree-Fock-Bogoliubov (GHFB) with and without the angular momentum projection (AMP). We find that $^{64}$Ca is an even-dripline nucleus and $^{59}$Ca is an odd-dripline nucleus, using $A$ dependence of the one-neutron separation energy $S_{1}$ and the two-neutron separation energy, $S_{2}$. As for $S_{1}$, $S_{2}$ and the binding energies $E_{rm B}$, our results agree with the experimental data in $^{40-58}$Ca. As other ground-state properties of $^{40-60,62,64}$Ca, we predict charge, proton, neutron, matter radii, neutron skin and deformation. As for charge radii, our results are consistent with the experimental data in $^{40-52}$Ca. For $^{48}$Ca, our results on proton, neutron, matter radii agree with the experimental data. Very lately, Tanaka et. al. measured interaction cross sections for $^{42-51}$Ca scattering on a $^{12}$C target at an incident energy per nucleon of $E_{rm lab}=280$MeV. Secondly, we predict reaction cross sections $sigma_{rm R}$ for $^{40-60,62,64}$Ca, using a chiral $g$-matrix double-folding model (DFM). To show the reliability of the present DFM for $sigma_{rm R}$, we apply the DFM for the data on $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets in $30 < E_{rm lab} < 400 $MeV, and show that the present DFM is good in $30 < E_{rm lab} < 100 $MeV and $250 < E_{rm lab} < 400 $MeV. For $110 < E_{rm lab} < 240 $MeV, our results have small errors. To improve the present DFM for $sigma_{rm R}$, we propose two prescriptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا