Do you want to publish a course? Click here

The Emergence of El-Ni~{n}o as an Autonomous Component in the Climate Network

115   0   0.0 ( 0 )
 Added by Shlomo Havlin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct and analyze a climate network which represents the interdependent structure of the climate in different geographical zones and find that the network responds in a unique way to El-Ni~{n}o events. Analyzing the dynamics of the climate network shows that when El-Ni~{n}o events begin, the El-Ni~{n}o basin partially loses its influence on its surroundings. After typically three months, this influence is restored while the basin loses almost all dependence on its surroundings and becomes textit{autonomous}. The formation of an autonomous basin is the missing link to understand the seemingly contradicting phenomena of the afore--noticed weakening of the interdependencies in the climate network during El-Ni~{n}o and the known impact of the anomalies inside the El-Ni~{n}o basin on the global climate system.



rate research

Read More

The temperatures in different zones in the world do not show significant changes due to El-Nino except when measured in a restricted area in the Pacific Ocean. We find, in contrast, that the dynamics of a climate network based on the same temperature records in various geographical zones in the world is significantly influenced by El-Nino. During El-Nino many links of the network are broken, and the number of surviving links comprises a specific and sensitive measure for El-Nino events. While during non El-Nino periods these links which represent correlations between temperatures in different sites are more stable, fast fluctuations of the correlations observed during El-Nino periods cause the links to break.
The connectivity pattern of networks, which are based on a correlation between ground level temperature time series, shows a dominant dense stripe of links in the southern ocean. We show that statistical categorization of these links yields a clear association with the pattern of an atmospheric Rossby wave, one of the major mechanisms associated with the weather system and with planetary scale energy transport. It is shown that alternating densities of negative and positive links (correlations) are arranged in half Rossby wave distances around 3,500 km, 7,000 km and 10,000 km and are aligned with the expected direction of energy flow, distribution of time delays and the seasonality of these waves. It is also shown that long distance links (i.e., of distances larger than 2,000 km) that are associated with Rossby waves are the most dominant in the climate network. Climate networks may thus be used as an efficient new way to detect and analyze Rossby waves, based on reliable and available ground level measurements, in addition to the frequently used 300 hPa reanalysis meridional wind data.
Although anomalous episodical warming of the eastern equatorial Pacific, dubbed El Ni~no by Peruvian fishermen, has major (and occasionally devastating) impacts around the globe, robust forecasting is still limited to about six months ahead. A significant extension of the pre-warming time would be instrumental for avoiding some of the worst damages such as harvest failures in developing countries. Here we introduce a novel avenue towards El Ni~no-prediction based on network methods inspecting emerging teleconnections. Our approach starts from the evidence that a large-scale cooperative mode - linking the El Ni~no-basin (equatorial Pacific corridor) and the rest of the ocean - builds up in the calendar year before the warming event. On this basis, we can develop an efficient 12 months-forecasting scheme, i.e., achieve some doubling of the early-warning period. Our method is based on high-quality observational data as available since 1950 and yields hit rates above 0.5, while false-alarm rates are below 0.1.
El Ni~no-Southern Oscillation (ENSO) exhibits diverse characteristics in spatial pattern, peak intensity, and temporal evolution. Here we develop a three-region multiscale stochastic model to show that the observed ENSO complexity can be explained by combining intraseasonal, interannual, and decadal processes. The model starts with a deterministic three-region system for the interannual variabilities. Then two stochastic processes of the intraseasonal and decadal variation are incorporated. The model can reproduce not only the general properties of the observed ENSO events, but also the complexity in patterns (e.g., Central Pacific vs. Eastern Pacific events), intensity (e.g., 10-20 year reoccurrence of extreme El Ni~nos), and temporal evolution (e.g., more multi-year La Ni~nas than multi-year El Ni~nos). While conventional conceptual models were typically used to understand the dynamics behind the common properties of ENSO, this model offers a powerful tool to understand and predict ENSO complexity that challenges our understanding of the 21st-century ENSO.
Different definitions of links in climate networks may lead to considerably different network topologies. We construct a network from climate records of surface level atmospheric temperature in different geographical sites around the globe using two commonly used definitions of links. Utilizing detrended fluctuation analysis, shuffled surrogates and separation analysis of maritime and continental records, we find that one of the major influences on the structure of climate networks is due to the auto-correlation in the records, that may introduce spurious links. This may explain why different methods could lead to different climate network topologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا