No Arabic abstract
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a widespread expectation had been that fully convective stars would exhibit surface magnetic behavior very different from that realized in more massive stars. Here I describe how recent observations and theoretical models of dynamo action in low-mass stars are partly confirming, and partly confounding, this basic expectation. In particular, I present the results of 3--D MHD simulations of dynamo action by convection in rotating spherical shells that approximate the interiors of 0.3 solar-mass stars at a range of rotation rates. The simulated stars can establish latitudinal differential rotation at their surfaces which is solar-like at ``rapid rotation rates (defined within) and anti-solar at slower rotation rates; the differential rotation is greatly reduced by feedback from strong dynamo-generated magnetic fields in some parameter regimes. I argue that this ``flip in the sense of differential rotation may be observable in the near future. I also briefly describe how the strength and morphology of the magnetic fields varies with the rotation rate of the simulated star, and show that the maximum magnetic energies attained are compatible with simple scaling arguments.
(abridged) Context: Main-sequence late-type stars with masses less than $0.35 M_odot$ are fully convective. Aims: The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods: Three-dimensional hydrodynamic and magnetohydrodynamic numerical simulations with a star-in-a-box model, where a spherical star is immersed inside of a Cartesian cube, are used. The model corresponds to a $0.2M_odot$ M5 dwarf. Rotation periods ($P_{rm rot}$) between 4.3 and 430 days are explored. Results: The slowly rotating model with $P_{rm rot}=430$ days produces anti-solar differential rotation with a slow equator and fast poles, along with predominantly axisymmetric quasi-steady large-scale magnetic fields. For intermediate rotation ($P_{rm rot}=144$ and $43$ days) differential rotation is solar-like (fast equator, slow poles) and large-scale magnetic fields are mostly axisymmetric and either quasi-stationary or cyclic. The latter occurs in a similar parameter regime as in other numerical studies in spherical shells, and the cycle period is similar to observed cycles in fully convective stars with comparable $P_{rm rot}$. In the rapid rotation regime the differential rotation is weak and the large-scale magnetic fields are increasingly non-axisymmetric with a dominating $m=1$ mode. This large-scale non-axisymmetric field also exhibits azimuthal dynamo waves. Conclusions: The results of the star-in-a-box models agree with simulations of partially convective late-type stars in spherical shells in that the transitions in differential rotation and dynamo regimes occur at similar rotational regimes in terms of the Coriolis (inverse Rossby) number. This similarity between partially and fully convective stars suggests that the processes generating differential rotation and large-scale magnetism are insensitive to the geometry of the star.
To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a subadiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced superadiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which however does not propagate across the convection zone. In consequence, baroclinicity effects remain small and the rotation iso-contours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone, and suggest that such banana-cell pattern can be hidden beneath the supergranulation layer.
Context. Multidimensional hydrodynamic simulations of convection in stellar interiors are numerically challenging, especially for flows at low Mach numbers. Methods. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstrate its usability for simulations in the astrophysical context. The time-implicit Seven-League Hydro (SLH) code was used to perform multidimensional simulations of convective helium shell burning based on a 25 M$_odot$ star model. The results obtained with the low-Mach AUSM$^{+}$-up solver were compared to results when using its non low-Mach variant AUSM$_mathrm{B}^{+}$-up. We applied well-balancing of the gravitational source term to maintain the initial hydrostatic background stratification. The computational grids have resolutions ranging from $180 times 90^2$ to $810 times 540^2$ cells and the nuclear energy release was boosted by factors of $3 times 10^3$, $1 times 10^4$, and $3 times 10^4$ to study the dependence of the results on these parameters. Results. The boosted energy input results in convection at Mach numbers in the range of $10^{-2}$ to $10^{-3}$. Standard mixing-length theory (MLT) predicts convective velocities of about $1.6 times 10^{-4}$ if no boosting is applied. Simulations with AUSM$^{+}$-up show a Kolmogorov-like inertial range in the kinetic energy spectrum that extends further toward smaller scales compared with its non low-Mach variant. The kinetic energy dissipation of the AUSM$^{+}$-up solver already converges at a lower resolution compared to AUSM$^{+}_{mathrm{B}}$ -up. The extracted entrainment rates at the boundaries of the convection zone are well represented by the bulk Richardson entrainment law and the corresponding fitting parameters are in agreement with published results for carbon shell burning.
We continue our studies on stellar latitudinal differential rotation. The presented work is a sequel of the work of Reiners et al. who studied the spectral line broadening profile of hundreds of stars of spectral types A through G at high rotational speed (vsini > 12 km/s). While most stars were found to be rigid rotators, only a few tens show the signatures of differential rotation. The present work comprises the rotational study of some 180 additional stars. The overall broadening profile is derived according to Reiners et al. from hundreds of spectral lines by least-squares deconvolution, reducing spectral noise to a minimum. Projected rotational velocities vsini are measured for about 120 of the sample stars. Differential rotation produces a cuspy line shape which is best measured in inverse wavelength space by the first two zeros of its Fourier transform. Rigid and differential rotation can be distinguished for more than 50 rapid rotators (vsini > 12 km/s) among the sample stars from the available spectra. Ten stars with significant differential rotation rates of 10-54 % are identified, which add to the few known rapid differential rotators. Differential rotation measurements of 6 % and less for four of our targets are probably spurious and below the detection limit. Including these objects, the line shapes of more than 40 stars are consistent with rigid rotation.
A turbulent transport of radiation in the solar convective zone is investigated. The mean-field equation for the irradiation intensity is derived. It is shown that due to the turbulent effects, the effective penetration length of radiation can be increased in several times in comparison with the mean penetration length of radiation (defined as an inverse mean absorption coefficient). Using the model of the solar convective zone based on the mixing length theory, where the mean penetration length of radiation is usually much smaller than the turbulent correlation length, it is demonstrated that the ratio of the effective penetration length to the mean penetration length of radiation increases in 2.5 times in the vicinity of the solar surface. The main reason are the compressibility effects that become important in the vicinity of the solar surface where temperature and density fluctuations increase towards the solar surface, enhancing fluctuations of the radiation absorption coefficient and increasing the effective penetration length of radiation.