Do you want to publish a course? Click here

Effective-mass Klein-Gordon Equation for non-PT/non-Hermitian Generalized Morse Potential

287   0   0.0 ( 0 )
 Added by Ramazan Sever
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The one-dimensional effective-mass Klein-Gordon equation for the real, and non-textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.



rate research

Read More

Path integral solutions are obtained for the the PT-/non-PT-Symmetric and non-Hermitian Morse Potential. Energy eigenvalues and the corresponding wave functions are obtained.
139 - Altug Arda , Ramazan Sever 2008
The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group corresponding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا