No Arabic abstract
We seek solutions $uinR^n$ to the semilinear elliptic partial difference equation $-Lu + f_s(u) = 0$, where $L$ is the matrix corresponding to the Laplacian operator on a graph $G$ and $f_s$ is a one-parameter family of nonlinear functions. This article combines the ideas introduced by the authors in two papers: a) {it Nonlinear Elliptic Partial Difference Equations on Graphs} (J. Experimental Mathematics, 2006), which introduces analytical and numerical techniques for solving such equations, and b) {it Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region} wherein we present some of our recent advances concerning symmetry, bifurcation, and automation fo We apply the symmetry analysis found in the SIAM paper to arbitrary graphs in order to obtain better initial guesses for Newtons method, create informative graphics, and be in the underlying variational structure. We use two modified implementations of the gradient Newton-Galerkin algorithm (GNGA, Neuberger and Swift) to follow bifurcation branches in a robust way. By handling difficulties that arise when encountering accidental degeneracies and higher-dimension we can find many solutions of many symmetry types to the discrete nonlinear system. We present a selection of experimental results which demonstrate our algorithms capability to automatically generate bifurcation diagrams and solution graphics starting with only an edgelis of a graph. We highlight interesting symmetry and variational phenomena.
We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swift to find solutions to a semilinear elliptic Dirichlet problem on the region whose boundary is the Koch snowflake. In a recent paper, we described an accurate and efficient method for generating a basis of eigenfunctions of the Laplacian on this region. In that work, we used the symmetry of the snowflake region to analyze and post-process the basis, rendering it suitable for input to the GNGA. The GNGA uses Newtons method on the eigenfunction expansion coefficients to find solutions to the semilinear problem. This article introduces the bifurcation digraph, an extension of the lattice of isotropy subgroups. For our example, the bifurcation digraph shows the 23 possible symmetry types of solutions to the PDE and the 59 generic symmetry-breaking bifurcations among these symmetry types. Our numerical code uses continuation methods, and follows branches created at symmetry-breaking bifurcations, so the human user does not need to supply initial guesses for Newtons method. Starting from the known trivial solution, the code automatically finds at least one solution with each of the symmetry types that we predict can exist. Such computationally intensive investigations necessitated the writing of automated branch following code, whereby symmetry information was used to reduce the number of computations per GNGA execution and to make intelligent branch following decisions at bifurcation points.
We consider general difference equations $u_{n+1} = F(u)_n$ for $n in mathbb{Z}$ on exponentially weighted $ell_2$ spaces of two-sided Hilbert space valued sequences $u$ and discuss initial value problems. As an application of the Hilbert space approach, we characterize exponential stability of linear equations and prove a stable manifold theorem for causal nonlinear difference equations.
We formulate fractional difference equations of Riemann-Liouville and Caputo type in a functional analytical framework. Main results are existence of solutions on Hilbert space-valued weighted sequence spaces and a condition for stability of linear fractional difference equations. Using a functional calculus, we relate the fractional sum to fractional powers of the operator $1 - tau^{-1}$ with the right shift $tau^{-1}$ on weighted sequence spaces. Causality of the solution operator plays a crucial role for the description of initial value problems.
In this paper, we study the existence, stability and bifurcation of random complete and periodic solutions for stochastic parabolic equations with multiplicative noise. We first prove the existence and uniqueness of tempered random attractors for the stochastic equations and characterize the structures of the attractors by random complete solutions. We then examine the existence and stability of random complete quasi-solutions and establish the relations of these solutions and the structures of tempered attractors. When the stochastic equations are incorporated with periodic forcing, we obtain the existence and stability of random periodic solutions. For the stochastic Chafee-Infante equation, we further establish the multiplicity and stochastic bifurcation of complete and periodic solutions.
We consider the so-called emph{discrete $p$-Laplacian}, a nonlinear difference operator that acts on functions defined on the nodes of a possibly infinite graph. We study the associated nonlinear Cauchy problem and identify the generator of the associated nonlinear semigroups. We prove higher order time regularity of the solutions. We investigate the long-time behavior of the solutions and discuss in particular finite extinction time and conservation of mass. Namely, on one hand, for small $p$ if an infinite graph satisfies some isoperimetric inequality, then the solution to the parabolic $p$-Laplace equation vanishes in finite time; on the other hand, for large $p,$ these parabolic $p$-Laplace equations always enjoy conservation of mass.