Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice


Abstract in English

We study the formation of Faraday waves in an elongated Bose-Einstein condensate in presence of a one-dimensional optical lattice, where phonons are parametrically excited by modulating the radial confinement of the condensate. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. By increasing the potential depth, the local sound velocity decreases and when it equals the condensate local phase velocity, the condensate becomes dynamically unstable and the parametric excitation of Faraday waves is suppressed.

Download