We investigate the mechanisms responsible for the low-frequency noise in liquid-gated nano-scale silicon nanowire field-effect transistors (SiNW-FETs) and show that the charge-noise level is lower than elementary charge. Our measurements also show that ionic strength of the surrounding electrolyte has a minimal effect on the overall noise. Dielectric polarization noise seems to be at the origin of the 1/f noise in our devices. The estimated spectral density of charge noise Sq = 1.6x10-2 e/sqr(Hz) at 10 Hz opens the door to metrological studies with these SiNW-FETs for the electrical detection of a small number of molecules.
We report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in-situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator. The latter removes the need for external charge sensors in quantum computing architectures and provides a compact way to readout the dispersive shift caused by changes in the quantum capacitance during interdot charge transitions. Here, we observe Pauli spin-blockade in the high-frequency response of the circuit at finite magnetic fields between singlet and triplet states. The blockade is lifted at higher magnetic fields when intra-dot triplet states become the ground state configuration. A lineshape analysis of the dispersive phase shift reveals furthermore an intradot valley-orbit splitting $Delta_{vo}$ of 145 $mu$eV. Our results open up the possibility to operate compact CMOS technology as a singlet-triplet qubit and make split-gate silicon nanowire architectures an ideal candidate for the study of spin dynamics.
We present a novel reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consist of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
We analyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3s*d5 tight-binding treatment of the electronic structure. Comparison of the measured performance of the device with the effects of series resistance removed to the simulated result assuming ballistic transport shows that the experimental device operates between 60 to 85% of the ballistic limit. For this ~15 nm diameter Ge nanowire, we also find that 14-18 modes are occupied at room temperature under ON-current conditions with ION/IOFF=100. To observe true one dimensional transport in a <110> Ge nanowire transistor, the nanowire diameter would have to be much less than about 5 nm. The methodology described here should prove useful for analyzing and comparing on common basis nanowire transistors of various materials and structures.
We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes respectively. At room temperature, peak TEP value of $sim 300 mu$V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values are used to estimate the carrier doping of Si nanowires.
We report on the fabrication and electrical characterization at millikelvin temperatures of a novel silicon single-electron transistor (Si-SET). The island and source-drain leads of the Si-SET are formed by the implantation of phosphorus ions to a density above the metal-insulator-transition, with the tunnel junctions created by undoped regions. Surface gates above each of the tunnel junctions independently control the tunnel coupling between the Si-SET island and leads. The device shows periodic Coulomb blockade with a charging energy e$^2$/2C$_Sigma$ $sim$ 250 $mu$eV, and demonstrates a reproducible and controllable pathway to a silicon-based SET using CMOS processing techniques.