Do you want to publish a course? Click here

Superionic state in double-layer capacitors with nanoporous electrodes

415   0   0.0 ( 0 )
 Added by Svyatoslav Kondrat
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the recent experiments [Chmiola et al, Science 313, 1760 (2006); Largeot et al, J. Am. Chem. Soc. 130, 2730 (2008)] an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by the image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state `superionic and suggest a simple model to describe it. The model reveals a possibility of a voltage-induced first-order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage.



rate research

Read More

A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations induced by charge fluctuations in the electrolyte. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [Reed, et al., J. Chem. Phys., 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO$_4$-acetonitrile/graphite EDLC. At low potential difference ($DeltaPsile 2V$), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher $DeltaPsi$. At $DeltaPsige 4V$, the CPM ion density profiles show significant enhancement (over FCM) of partially electrode solvated Li$^+$ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li$^+$ ions to the electrode surface.
Advancements in electrochemical double-layer capacitor (EDLC) technology require the concomitant use of novel efficient electrode materials and viable electrode manufacturing methods. Cost-effectiveness, scalability and sustainability are key-drivers for fulfilling product development chain accepted by worldwide legislations. Herein, we report a scalable and sprayable green electrode material-based ink based on activated carbon and single-/few-layer graphene (SLG/FLG) flakes. We show that, contrary to commercial reduced graphene oxide, defect-free and flat SLG/FLG flakes reduce the friction of ions over the electrode films, while spray coating deposition of our ink maximises the electrolyte accessibility to the electrode surface area. Sprayed SLG/FLG flakes-based EDLCs display superior rate capability performance (e.g., specific energies of 31.5, 23.7 and 12.5 Wh kg-1 at specific powers of 150, 7500 and 30000 W kg-1, respectively) compared to both SLG/FLG flakes-free devices and commercial-like EDLCs produced by slurry-coating method. The use of SLG/FLG flakes enables our sprayed EDLCs to operate in a wide range of temperature (-40/+100{deg}C) compatible with ionic liquid/organic solvent-based electrolytes, overcoming the specific power limits of AC-based EDLCs. A prototype EDLCs stack consisting of multiple large-area EDLCs, each one displaying a capacitance of 25 F, demonstrates the industrial potential of our technology.
The electric double layer (EDL) formed around charged nanostructures at the liquid-solid interface determines their electrochemical activity and influences their electrical and optical polarizability. We experimentally demonstrate that restructuring of the EDL at the nanoscale can be detected by dark-field scattering microscopy. Temporal and spatial characterization of the scattering signal demonstrates that the potentiodynamic optical contrast is proportional to the accumulated charge of polarisable ions at the interface and its time derivative represents the nanoscale ionic current. The material-specificity of the EDL formation is used in our work as a label-free contrast mechanism to image nanostructures and perform spatially-resolved cyclic voltametry on ion current density of a few attoamperes, corresponding to the exchange of only a few hundred ions.
In superionic compounds one component pre-melts providing high ionic conductivity to solid state electrolytes. Here, we find sublattice melting in colloidal crystals of oppositely charged particles that are highly asymmetric in size and charge in salt solutions. The small particles in ionic compounds melt when the temperature increases forming a superionic phase. These delocalized small particles in a crystal of large oppositely charged particles, in contrast to superionic phases in atomic systems, form crystals with non-electroneutral stoichiometric ratios. This generates structures with multiple domains of ionic crystals in percolated superionic phases with adjustable stoichiometries.
The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber (RMSGC) using additional field shaping strips located inside the detector substrate are described.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا