Do you want to publish a course? Click here

A Bayesian analysis of the 27 highest energy cosmic rays detected by the Pierre Auger Observatory

104   0   0.0 ( 0 )
 Added by Laura Watson M.Sci
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is possible that ultra-high energy cosmic rays (UHECRs) are generated by active galactic nuclei (AGNs), but there is currently no conclusive evidence for this hypothesis. Several reports of correlations between the arrival directions of UHECRs and the positions of nearby AGNs have been made, the strongest detection coming from a sample of 27 UHECRs detected by the Pierre Auger Observatory (PAO). However, the PAO results were based on a statistical methodology that not only ignored some relevant information (most obviously the UHECR arrival energies but also some of the information in the arrival directions) but also involved some problematic fine-tuning of the correlation parameters. Here we present a fully Bayesian analysis of the PAO data (collected before 2007 September), which makes use of more of the available information, and find that a fraction F_AGN = 0.15^(+0.10)_(-0.07) of the UHECRs originate from known AGNs in the Veron-Cetty & Veron (VCV) catalogue. The hypothesis that all the UHECRs come from VCV AGNs is ruled out, although there remains a small possibility that the PAO-AGN correlation is coincidental (F_AGN = 0.15 is 200 times as probable as F_AGN = 0.00).



rate research

Read More

We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^circ$ and energies in excess of 4 EeV ($4 times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding $p$-values obtained after accounting for searches blindly performed at several angular scales, are $1.3 times 10^{-5}$ in the case of the angular power spectrum, and $2.5 times 10^{-3}$ in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.
In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an extensive air shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10^{17} and 10^{19} eV and zenith angles up to 65 degs. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte-Carlo results showing how LTP functions from data are in good agreement with simulations.
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا