Do you want to publish a course? Click here

Observations of the Blazar 3C 66A with the MAGIC Telescopes in Stereoscopic Mode

137   0   0.0 ( 0 )
 Added by Koji Saito
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new observations of the intermediate-frequency peaked BL Lacertae object 3C 66A with the MAGIC telescopes. The data sample we use were taken in 2009 December and 2010 January, and comprises 2.3 hr of good quality data in stereoscopic mode. In this period, we find a significant signal from the direction of the blazar 3C 66A. The new MAGIC stereoscopic system is shown to play an essential role for the separation between 3C 66A and the nearby radio galaxy 3C 66B, which is at a distance of only $6^prime$. The derived integral flux above $100eh{GeV}$ is 8.3% of Crab Nebula flux and the energy spectrum is reproduced by a power law of photon index $3.64 pm 0.39_{rm stat} pm 0.25_{rm sys}$. Within errors, this is compatible with the one derived by VERITAS in 2009. From the spectra corrected for absorption by the extragalactic background light, we only find small differences between the four models that we applied, and constrain the redshift of the blazar to $z < 0.68$.



rate research

Read More

The MAGIC gamma-ray observatory has recently been upgraded by a second Cherenkov telescope at a distance of 85 m from the first one. Simultaneous observation of air showers with the two MAGIC telescopes (stereoscopic mode) will improve the reconstruction of the shower axis and solve the ambiguity in the impact point occurring in single-telescope mode. Also, the stereo observation will result in a better angular resolution, energy estimation and cosmic-ray background rejection. It is expected that the sensitivity of MAGIC improves significantly over the full energy range (60 GeV - 20 TeV). Here, we present the performance estimated from Monte Carlo simulations.
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.
We report on the observations of the Crab pulsar with the MAGIC telesopes. Data were taken both in the mono-mode ($>25$ GeV) and in the stereo-mode ($>50$ GeV). Clear signals from the two peaks were detected with both modes and the phase resolved energy spectra were calculated. By comparing with the measurements done by Fermi-LAT, we found that the energy spectra of the Crab pulsar does not follow a power law with an exponential cutoff, but that it extends as a power law after the break at around 5 GeV. This suggests that the emission above 25 GeV is not dominated by the curvatura radiation, which is inconsistent with the standard prediction of the OG and SG models.
We present the observational results of the Gamma-ray blazar, 3C 66A, at 2.3, 8.4, and 22 GHz at 4 epochs during 2004-05 with the VLBA. The resulting images show an overall core-jet structure extending roughly to the south with two intermediate breaks occurring in the region near the core. By model-fitting to the visibility data, the northmost component, which is also the brightest, is identified as the core according to its relatively flat spectrum and its compactness. As combined with some previous results to investigate the proper motions of the jet components, it is found the kinematics of 3C 66A is quite complicated with components of inward and outward, subluminal and superluminal motions all detected in the radio structure. The superluminal motions indicate strong Doppler boosting exists in the jet. The apparent inward motions of the innermost components last for at least 10 years and could not be caused by new-born components. The possible reason could be non-stationarity of the core due to opacity change.
3C 66A is an intermediate-frequency-peaked BL Lac object detected by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. We present a study of the long-term variations of this blazar seen over 2 years at GeV energies with Fermi and in the optical (flux and polarization) and near infrared with the Kanata telescope. In 2008, the first year of the study, we find a correlation between the gamma-ray flux and the measurements taken with the Kanata telescope. This is in contrast to the later measurements performed during 2009--2010 which show only a weak correlation along with a gradual increase of the optical flux. We calculate an external seed photon energy density assuming that the gamma-ray emission is due to external Compton scattering. The energy density of the external photons is found to be higher by a factor of two in 2008 compared to 2009--2010. We conclude that the different behaviors observed between the first year and the later years might be explained by postulating two different emission components.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا