No Arabic abstract
We measured the trigonometric annual parallax of H$_2$O maser source associated with the massive star-forming regions IRAS 06061+2151 with VERA. The annual parallax of $0.496pm0.031$ mas corresponding to a distance of $2.02^{+0.13}_{-0.12}$ kpc was obtained by 10 epochs of observations from 2007 October to 2009 September. This distance was obtained with a higher accuracy than the photometric distance previously measured, and places IRAS 06061+2151 in the Perseus spiral arm. We found that IRAS 06061+2151 also has a peculiar motion of larger than 15 km s$^{-1}$ counter to the Galactic rotation. That is similar to five sources in the Perseus spiral arm, whose parallaxes and proper motions have already been measured with higher accuracy. Moreover, these sources move at on average 27 km s$^{-1}$ toward the Galactic center and counter to the Galactic rotation.
We present results of multi-epoch VLBI observations with VERA (VLBI Exploration of Radio Astrometry) of the 22 GHz H$_{2}$O masers associated with a young stellar object (YSO) IRAS 22198+6336 in a dark cloud L1204G. Based on the phase-referencing VLBI astrometry, we derive an annual parallax of IRAS 22198+6336 to be 1.309$pm$0.047 mas, corresponding to the distance of 764$pm$27 pc from the Sun. Although the most principal error source of our astrometry is attributed to the internal structure of the maser spots, we successfully reduce the errors in the derived annual parallax by employing the position measurements for all of the 26 detected maser spots. Based on this result, we reanalyze the spectral energy distribution (SED) of IRAS 22198+6336 and find that the bolometric luminosity and total mass of IRAS 22198+6336 are 450$L_{odot}$ and 7$M_{odot}$, respectively. These values are consistent with an intermediate-mass YSO deeply embedded in the dense dust core, which has been proposed to be an intermediate-mass counterpart of a low-mass Class 0 source. In addition, we obtain absolute proper motions of the H$_{2}$O masers for the most blue-shifted components. We propose that the collimated jets aligned along the east-west direction are the most plausible explanation for the origin of the detected maser features.
We present results of a multi-epoch monitoring program on variability of 6$,$cm formaldehyde (H$_2$CO) masers in the massive star forming region NGC$,$7538$,$IRS$,$1 from 2008 to 2015 conducted with the GBT, WSRT, and VLA. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC$,$7538$,$IRS$,$1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2$,$GHz methanol and 22.2$,$GHz water masers toward NGC$,$7538$,$IRS$,$1. The brightest maser components of CH$_3$OH and H$_2$O species show a decrease in flux density as a function of time. The brightest H$_2$CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H$_2$O and 12.2$,$GHz CH$_3$OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97$,$GHz CH$_3$OH transitions in NGC$,$7538$,$IRS$,$1 are also reported. In addition, we observed five other 6$,$cm formaldehyde maser regions. We found no evidence of significant variability of the 6$,$cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96$-$0.02. All six sources were also observed in the H$_2^{13}$CO isotopologue transition of the 6$,$cm H$_2$CO line; H$_2^{13}$CO absorption was detected in five of the sources. Estimated column density ratios [H$_2^{12}$CO]/[H$_2^{13}$CO] are reported.
We discovered new high-velocity components of H$_2$O maser emission in one of the water fountain sources, IRAS~18286$-$0959, which has been monitored using the Nobeyama 45 m telescope in the new FLASHING (Finest Legacy Acquisitions of SiO- and H$_2$O-maser Ignitions by Nobeyama Generation) project since 2018 December. The maser spectra show new, extremely high expansion velocities ($>$200~km~s$^{-1}$ projected in the line of sight) components, some of which are located symmetrically in the spectrum with respect to the systemic velocity. They were also mapped with KaVA (KVN and VERA Combined Array) in 2019 March. We located some of these maser components closer to the central stellar system than other high velocity components (50--200~km~s$^{-1}$) that have been confirmed to be associated with the known bipolar outflow. The new components would flash in the fast collimated jet at a speed over 300~km~s$^{-1}$ (soon) after 2011 when they had not been detected. The fastest of the new components seem to indicate rapid deceleration in these spectra, however our present monitoring is still too sparse to unambiguously confirm it (up to 50~km~s$^{-1}$yr$^{-1}$) and too short to reveal their terminal expansion velocity, which will be equal to the expansion velocity that has been observed ($v_{rm exp}sim$120~km~s$^{-1}$). Future occurrences of such extreme velocity components may provide a good opportunity to investigate possible recurrent outflow ignitions. Thus sculpture of the parental envelope will be traced by the dense gas that is entrained by the fast jet and exhibits spectacular distributions of the relatively stable maser features.
Context. With the latest infrared surveys, the number of massive protostellar candidates has increased significantly. New studies have posed additional questions on important issues about the formation, evolution, and other phenomena related to them. Complementary to infrared data, radio observations are a good tool to study the nature of these objects, and to diagnose the formation stage. Aims. Here we study the far-infrared source IRAS 16353-4636 with the aim of understanding its nature and origin. In particular, we search for young stellar objects (YSOs), possible outflow structure, and the presence of non-thermal emission. Methods. Using high-resolution, multi-wavelength radio continuum data obtained with the Australia Telescope Compact Array, we image IRAS 16353-4636 and its environment from 1.4 to 19.6 GHz, and derive the distribution of the spectral index at maximum angular resolution. We also present new JHKs photometry and spectroscopy data obtained at ESO NTT. 13 CO and archival HI line data, and infrared databases (MSX, GLIMPSE, MIPSGal) are also inspected. Results. The radio continuum emission associated with IRAS 16353-4636 was found to be extended (~10 arcsec), with a bow-shaped morphology above 4.8 GHz, and a strong peak persistent at all frequencies. The NIR photometry led us to identify ten near-IR sources and classify them according to their color. We used the HI line data to derive the source distance, and analyzed the kinematical information from the CO and NIR lines detected. Conclusions. We have identified the source IRAS 16353-4636 as a new protostellar cluster. In this cluster we recognized three distinct sources: a low-mass YSO, a high-mass YSOs, and a mildly confined region of intense and non-thermal radio emission. We propose the latter corresponds to the terminal part of an outflow.
We present a model in which the 22 GHz H$_2$O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density $n_0 sim 10^6 - 10^8$ cm$^{-3}$). We focus on high-velocity ($v_s > 30$ km s$^{-1}$) dissociative J shocks in which the heat of H$_2$ re-formation maintains a large column of $sim 300-400$ K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H$_2$O. The H$_2$O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally $sim 10^{11} - 10^{14}$ K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10 to 100 times the shock thickness of $sim 10^{13}$ cm. The masers are therefore beamed towards the observer, who typically views the shock edge-on, or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line of sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H$_2$O 22 GHz masers these observed parameters can be produced in J shocks with $n_0sim 10^6 - 10^8$ cm$^{-3}$ and $v_s sim 30 -200$ km s$^{-1}$. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, $j=n_0v_s$, rather than on $n_0$ and $v_s$ separately.