We present real-space dynamical mean-field theory calculations for attractively interacting fermions in three-dimensional lattices with elongated traps. The critical polarization is found to be 0.8, regardless of the trap elongation. Below the critical polarization, we find unconventional superfluid structures where the polarized superfluid and Fulde-Ferrell-Larkin-Ovchinnikov-type states emerge across the entire core region.
We study the Higgs amplitude mode in the s-wave superfluid state on the honeycomb lattice inspired by recent cold atom experiments. We consider the attractive Hubbard model and focus on the vicinity of a quantum phase transition between semi-metal and superfluid phases. On either side of the transition, we find collective mode excitations that are stable against decay into quasiparticle-pairs. In the semi-metal phase, the collective modes have Cooperon and exciton character. These modes smoothly evolve across the quantum phase transition, and become the Anderson-Bogoliubov mode and the Higgs mode of the superfluid phase. The collective modes are accommodated within a window in the quasiparticle-pair continuum, which arises as a consequence of the linear Dirac dispersion on the honeycomb lattice, and allows for sharp collective excitations. Bragg scattering can be used to measure these excitations in cold atom experiments, providing a rare example wherein collective modes can be tracked across a quantum phase transition.
Our goal is to understand the phenomena arising in optical lattice fermions at low temperature in an external magnetic field. Varying the field, the attraction between any two fermions can be made arbitrarily strong, where composite bosons form via so-called Feshbach resonances. By setting up strong-coupling equations for fermions, we find that in spatial dimension $d>2$ they couple to bosons which dress up fermions and lead to new massive composite fermions. At low enough temperature, we obtain the critical temperature at which composite bosons undergo the Bose-Einstein condensate (BEC), leading to BEC-dressing massive fermions. These form tightly bound pair states which are new bosonic quasi-particles producing a BEC-type condensate. A quantum critical point is found and the formation of condensates of complex quasi-particles is speculated over.
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairing transition temperature, as a function of density and interaction strength, occurs for the case with isotropic hopping amplitudes. In this isotropic case, we go beyond mean field theory and study collective fluctuations, treating both pairing and density fluctuations for interaction strengths ranging from weak to strong coupling. We find evidence for a sharp sound mode, together with a well-defined Leggett mode over a wide region of the phase diagram. We also calculate the superfluid order parameter and collective modes in the presence of nonzero superfluid flow. The flow-induced softening of these collective modes leads to dynamical instabilities involving stripe-like density modulations as well as a Leggett-mode instability associated with the natural sublattice symmetry breaking charge-ordered state on the honeycomb lattice. The latter provides a non-trivial test for the experimental realization of the one-band Hubbard model. We delineate regimes of the phase diagram where the critical current is limited by depairing or by such collective instabilities, and discuss experimental implications of our results.
We review the concepts and the present state of theoretical studies of spin-imbalanced superfluidity, in particular the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in the context of ultracold quantum gases. The comprehensive presentation of the theoretical basis for the FFLO state that we provide is useful also for research on the interplay between magnetism and superconductivity in other physical systems. We focus on settings that have been predicted to be favourable for the FFLO state, such as optical lattices in various dimensions and spin-orbit coupled systems. These are also the most likely systems for near-future experimental observation of the FFLO state. Theoretical bounds, such as Blochs and Luttingers theorems, and experimentally important limitations, such as finite-size effects and trapping potentials, are considered. In addition, we provide a comprehensive review of the various ideas presented for the observation of the FFLO state. We conclude our review with an analysis of the open questions related to the FFLO state, such as its stability, superfluid density, collective modes and extending the FFLO superfluid concept to new types of lattice systems.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-$T_c$ superconductors.