Do you want to publish a course? Click here

Brauer group of moduli spaces of pairs

162   0   0.0 ( 0 )
 Added by Marina Logares
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Brauer group of any moduli space of stable pairs with fixed determinant over a curve is zero.



rate research

Read More

Let $X$ be a compact Riemann surface $X$ of genus at--least two. Fix a holomorphic line bundle $L$ over $X$. Let $mathcal M$ be the moduli space of Hitchin pairs $(E ,phiin H^0(End(E)otimes L))$ over $X$ of rank $r$ and fixed determinant of degree $d$. We prove that, for some numerical conditions, $mathcal M$ is irreducible, and that the isomorphism class of the variety $mathcal M$ uniquely determines the isomorphism class of the Riemann surface $X$.
91 - Johan Martens 2017
We give a summary of joint work with Michael Thaddeus that realizes toroidal compactifcations of split reductive groups as moduli spaces of framed bundles on chains of rational curves. We include an extension of this work that covers Artin stacks with good moduli spaces. We discuss, for complex groups, the symplectic counterpart of these compactifications, and conclude with some open problems about the moduli problem concerned.
151 - Vicente Mu~noz 2012
Let $X$ be a smooth projective curve of genus $ggeq 2$ over the complex numbers. A holomorphic triple $(E_1,E_2,phi)$ on $X$ consists of two holomorphic vector bundles $E_1$ and $E_2$ over $X$ and a holomorphic map $phi:E_2 to E_1$. There is a concept of stability for triples which depends on a real parameter $sigma$. In this paper, we determine the Hodge polynomials of the moduli spaces of $sigma$-stable triples with $rk(E_1)=3$, $rk(E_2)=1$, using the theory of mixed Hodge structures. This gives in particular the Poincare polynomials of these moduli spaces. As a byproduct, we recover the Hodge polynomial of the moduli space of odd degree rank 3 stable vector bundles.
135 - Yijie Lin 2020
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-Mumford stacks. We study the deformation and obstruction theories of stable pairs, and then prove the existence of virtual fundamental classes for some cases of dimension two and three. This leads to a definition of Pandharipande-Thomas invariants on three-dimensional smooth projective Deligne-Mumford stacks.
244 - Eugen Hellmann 2008
We consider the moduli space, in the sense of Kisin, of finite flat models of a 2-dimensional representation with values in a finite field of the absolute Galois group of a totally ramified extension of $mathbb{Q}_p$. We determine the connected components of this space and describe its irreducible components. These results prove a modified version of a conjecture of Kisin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا