Do you want to publish a course? Click here

Confirmation of a Retrograde Orbit for Exoplanet WASP-17b

467   0   0.0 ( 0 )
 Added by Daniel Bayliss
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present high-precision radial velocity observations of WASP-17 throughout the transit of its close-in giant planet, using the MIKE spectrograph on the 6.5m Magellan Telescope at Las Campanas Observatory. By modeling the Rossiter-McLaughlin effect, we find the sky-projected spin-orbit angle to be lambda = 167.4 pm 11.2 deg. This independently confirms the previous finding that WASP-17b is on a retrograde orbit, suggesting it underwent migration via a mechanism other than just the gravitational interaction between the planet and the disk. Interestingly, our result for lambda differs by 45 pm 13 deg from the previously announced value, and we also find that the spectroscopic transit occurs 15 pm 5 min earlier than expected, based on the published ephemeris. The discrepancy in the ephemeris highlights the need for contemporaneous spectroscopic and photometric transit observations whenever possible.



rate research

Read More

137 - S. C. C. Barros 2010
We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2455335.92050 +/- 0.00074 (HJD) and the transit duration is 4.663 hours. WASP-38bs discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 +/- 80K, logg =4.3 +/- 0.1, vsini=8.6 +/- 0.4 km/s, M*=1.16 +/- 0.04 Msun and R* =1.33 +/- 0.03 Rsun, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. The planet has a mass of 2.69 +/- 0.06 Mjup and a radius of 1.09 +/-0.03 Rjup giving a density, rho_p = 2.1 +/-0.1 rho_jup. The high precision of the eccentricity e=0.0314 +/- 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 +/- 33K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V =9.4 mag), is a good candidate for followup atmospheric studies.
We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.
We measured the Rossiter-McLaughlin effect of WASP-107b during a single transit with Keck/HIRES. We found the sky-projected inclination of WASP-107bs orbit, relative to its host stars rotation axis, to be $|lambda| = {118}^{+38}_{-19}$ degrees. This confirms the misaligned/polar orbit that was previously suggested from spot-crossing events and adds WASP-107b to the growing population of hot Neptunes in polar orbits around cool stars. WASP-107b is also the fourth such planet to have a known distant planetary companion. We examined several dynamical pathways by which this companion could have induced such an obliquity in WASP-107b. We find that nodal precession and disk dispersal-driven tilting can both explain the current orbital geometry while Kozai-Lidov cycles are suppressed by general relativity. While each hypothesis requires a mutual inclination between the two planets, nodal precession requires a much larger angle which for WASP-107 is on the threshold of detectability with future Gaia astrometric data. As nodal precession has no stellar type dependence, but disk dispersal-driven tilting does, distinguishing between these two models is best done on the population level. Finding and characterizing more extrasolar systems like WASP-107 will additionally help distinguish whether the distribution of hot-Neptune obliquities is a dichotomy of aligned and polar orbits or if we are uniformly sampling obliquities during nodal precession cycles.
High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 $AA$ and 5895.92 $AA$) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium absorption in the transmission spectrum. We analyze 37 high-resolution spectra observed during a single transit of WASP-17b with the MIKE instrument on the 6.5 meter Magellan Telescopes. We exclude stellar flaring activity during the observations by analyzing the temporal variations of H$_{alpha}$ and Ca II infra-red triplet (IRT) lines. Then we obtain the excess absorption light curves in wavelength bands of 0.75, 1, 1.5 and 3 $AA$ around the center of each sodium line (i.e., the light curve approach). We model the effects of differential limb-darkening, and the changing planetary radial velocity on the light curves. We also analyze the sodium absorption directly in the transmission spectrum, which is obtained through dividing in-transit by out-of-transit spectra (i.e., the division approach). We then compare our measurements with a radiative transfer atmospheric model. Our analysis results in a tentative detection of exoplanetary sodium: we measure the width and amplitude of the exoplanetary sodium feature to be $sigma_{mathrm{Na}}$ = (0.128 $pm$ 0.078) $AA$ and A$_{mathrm{Na}}$ = (1.7 $pm$ 0.9)% in the excess light curve approach and $sigma_{mathrm{Na}}$ = (0.850 $pm$ 0.034) $AA$ and A$_{mathrm{Na}}$ = (1.3 $pm$ 0.6)% in the division approach. By comparing our measurements with a simple atmospheric model, we retrieve an atmospheric temperature of 1550 $^{+170} _{-200}$ K and radius (at 0.1 bar) of 1.81 $pm$ 0.02 R$_{rm Jup}$ for WASP-17b.
We present high precision transit observations of the exoplanet WASP-21b, obtained with the RISE instrument mounted on 2.0m Liverpool Telescope. A transit model is fitted, coupled with an MCMC routine to derive accurate system parameters. The two new high precision transits allow to estimate the stellar density directly from the light curve. Our analysis suggests that WASP-21 is evolving off the main sequence which led to a previous overestimation of the stellar density. Using isochrone interpolation, we find a stellar mass of 0.86 pm 0.04 Msun which is significantly lower than previously reported (1.01 pm 0.03 Msun). Consequently, we find a lower planetary mass of $0.27 pm 0.01 Mjup$. A lower inclination (87.4 pm 0.3 degrees) is also found for the system than previously reported, resulting in a slightly larger stellar (R_* =1.10 pm 0.03 Rsun) and planetary radius (R_p = 1.14 pm 0.04 Rjup). The planet radius suggests a hydrogen/helium composition with no core which strengthens the correlation between planetary density and host star metallicity. A new ephemeris is determined for the system, i.e., t0 =2455084.51974 pm 0.00020 (HJD) and P=4.3225060 pm 0.0000031 days. We found no transit timing variations in WASP-21b.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا