Using the isospin-dependent quantum molecular dynamics model we study the isospin effects on the disappearance of flow for the reactions of 58Ni+58Ni and 58Fe+58Fe as a function of impact parameter. We found good agreement between our calculations and experimentally measured energy of vanishing flow at all colliding geometries. Our calculations reproduce the experimental data within 5%(10%) at central (peripheral) colliding geometries.
We study the role of colliding geometry on the N/Z dependence of balance energy using isospin-dependent quantum molecular dynamics model. Our study reveals that the N/Z dependence of balance energy becomes much steeper for peripheral collisions as compared to the central collisions. We also study the effect of system mass on the impact parameter dependence of N/Z dependence of balance energy. The study shows that lighter systems shows greater sensitivity to colliding geometry towards the N/Z dependence.
Background: In heavy ion collision at the Fermi energies Isospin equilibration processes occur- ring when nuclei with different charge/mass asymmetries interacts have been investigated to get information on the nucleon-nucleon Iso-vectorial effective interaction. Purpose: In this paper, for the system 48Ca +27 Al at 40 MeV/nucleon, we investigate on this process by means of an observable tightly linked to isospin equilibration processes and sensitive in exclusive way to the dynamical stage of the collision. From the comparison with dynamical model calculations we want also to obtain information on the Iso-vectorial effective microscopic interaction. Method: The average time derivative of the total dipole associated to the relative motion of all emitted charged particles and fragments has been determined from the measured charges and velocities by using the 4? multi-detector CHIMERA. The average has been determined for semi- peripheral collisions and for different charges Zb of the biggest produced fragment. Experimental evidences collected for the systems 27Al+48Ca and 27Al+40Ca at 40 MeV/nucleon used to support this novel method of investigation are also discussed.
Fusion cross-sections are computed for the $^{40}$Ca$+^{40}$Ca system over a wide energy range with two microscopic approaches where the only phenomenological input is the Skyrme energy density functional. The first method is based on the coupled-channels formalism, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock technique and the deformation parameters of vibrational states computed with the time-dependent Hartree-Fock (TDHF) approach. The second method is based on the density-constrained TDHF method to generate nucleus-nucleus potentials from TDHF evolution. Both approaches incorporate the effect of couplings to internal degrees of freedoms in different ways. The predictions are in relatively good agreement with experimental data.
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.